Caruana, R.: Multitask learning. Mach.Learn. 28(1), 41–75 (1997)
Google Scholar
Collobert, R., Weston, J.: A unified architecture for natural language processing. In: Proceedings of the 25th International Conference on Machine learning—ICML ’08, pp. 160–167. ACM Press, New York, USA (2008)
Google Scholar
Hinton, G.E., Bengio, Y., Lecun, Y.: Deep Learning: NIPS 2015 Tutorial (2015)
Google Scholar
LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient BackProp. In: Neural Networks: Tricks of the Trade, vol. 1524, chap. Efficient BackProp, pp. 9–50. Springer, Berlin, Heidelberg (1998)
Google Scholar
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout : a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15, 1929–1958 (2014)
MathSciNet
MATH
Google Scholar
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing, vol. 28, p. 1 (2013)
Google Scholar
Hochreiter, S.: Recurrent neural net learning and vanishing gradient. Int. J. Uncertainity Fuzziness Knowl. Based Syst. 6(2), 8 (1998)
Google Scholar
Bengio, Y., Simard, P., Frasconi, P.: Learning long term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)
CrossRef
Google Scholar
Glorot, X., Bordes, A., Bengio, Y.: Deep Sparse Rectifier Neural Networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), vol. 15, pp. 315–323 (2011). (Journal of Machine Learning Research—Workshop and Conference Proceedings)
Google Scholar
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19(1), 153–160 (2007)
Google Scholar
Hinton, G.E.: Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)
CrossRef
Google Scholar
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
MathSciNet
CrossRef
MATH
Google Scholar
Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., Yan, S.: Deep Learning with S-shaped Rectified Linear Activation Units. arXiv preprint arXiv:1512.07030 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034. IEEE (2015)
Google Scholar
Witten, I.H.: Text mining. Practical Handbook of Internet Computing, pp. 14–1 (2005)
Google Scholar
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013), pp. 1–12 (2013)
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Google Scholar
Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of NAACL-HLT, pp. 746–751 (2013)
Google Scholar
Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)
Google Scholar
Powers, D.M.W.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)
MathSciNet
Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2012)
MathSciNet
MATH
Google Scholar
Theano Development team: theano: a python framework for fast computation of mathematical expressions. arXiv e-prints (2016)
Google Scholar
Chollet, F.: Keras. https://github.com/fchollet/keras (2015)