Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9953))

Included in the following conference series:

  • 2310 Accesses


A brief introduction to the state-of-the-art techniques in verification of hybrid systems is presented. In particular, the hybrid automaton model is introduced, important correctness properties are discussed and a brief overview of the analysis techniques and tools is presented.

The original version of this chapter was revised: Two author names with affiliation were added. The Erratum to this chapter is available at 10.1007/978-3-319-47169-3_63

An erratum to this chapter can be found at

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Aceto, L., Ingólfsdóttir, A., Guldstrand Larsen, K., Srba, J.: Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  2. Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 93–102 (2011)

    Google Scholar 

  3. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X_15

    Chapter  Google Scholar 

  4. Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

    Article  MATH  Google Scholar 

  5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for automatic verification of real-time systems. In: Hybrid Systems, pp. 232–243 (1995)

    Google Scholar 

  6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  7. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dang, T., Testylier, R.: Hybridization domain construction using curvature estimation. In: HSCC, pp. 123–132 (2011)

    Google Scholar 

  9. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  11. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation, clustering in space-time. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 203–212 (2013)

    Google Scholar 

  12. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 291–305 (2005)

    Google Scholar 

  13. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proceedings of the ACM Symposium on Theory of Computation, pp. 373–382 (1995)

    Google Scholar 

  14. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997). doi:10.1007/3-540-63166-6_48

    Chapter  Google Scholar 

  15. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  16. Lal, R., Prabhakar, P.: Beaver: bounded error approximate verification (2015)

    Google Scholar 

  17. Liberzon, D.: Switching in Systems and Control. Birkhuser, Boston (2003)

    Book  MATH  Google Scholar 

  18. Möhlmann, E., Theel, O.E.: Stabhyli: a tool for automatic stability verification of non-linear hybrid systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC, Philadelphia, PA, USA, 8–11 April 2013, pp. 107–112 (2013)

    Google Scholar 

  19. Parrilo, P.A.: Structure semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA, May 2000

    Google Scholar 

  20. Pettersson, S., Lennartson, B.: Stability of hybrid systems using LMIs - a gear-box application. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 381–395. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1_32

    Chapter  Google Scholar 

  21. Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–295. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_20

    Chapter  Google Scholar 

  22. Prabhakar, P., Soto, M.G.: Averist: algorithmic verifier for stability. In: International Workshop on Numerical Software Verification (2015)

    Google Scholar 

  23. Prabhakar, P., Soto, M.G.: Counterexample guided abstraction refinement for stability analysis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 495–512. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41528-4_27

    Chapter  Google Scholar 

  24. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 133–142 (2011)

    Google Scholar 

Download references


The author would like to thank Miriam García Soto and Ratan Lal for discussions and inputs towards writing this draft.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pavithra Prabhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Prabhakar, P., Soto, M.G., Lal, R. (2016). Verification Techniques for Hybrid Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications. ISoLA 2016. Lecture Notes in Computer Science(), vol 9953. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47168-6

  • Online ISBN: 978-3-319-47169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics