Advertisement

User Profiles for Context-Aware Reconfiguration in Software Product Lines

  • Michael Nieke
  • Jacopo Mauro
  • Christoph Seidl
  • Ingrid Chieh Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9953)

Abstract

Software Product Lines (SPLs) are a mechanism to capture families of closely related software systems by modeling commonalities and variability. Although user customization has a growing importance in software systems and is a vital sales argument, SPLs currently only allow user customization at deploy-time. In this paper, we extend the notion of context-aware SPLs by means of user profiles, containing a linearly ordered set of preferences. Preferences have priorities, meaning that a low priority preference can be neglected in favor of a higher prioritized one. We present a reconfiguration engine checking the validity of the current configuration and, if necessary, reconfiguring the SPL while trying to fulfill the preferences of the active user profile. Thus, users can be assured about the reconfiguration engine providing the most suitable configuration for them. Moreover, we demonstrate the feasibility of our approach using a case study based on existing car customizability.

Keywords

Dynamic Software Product Line User profiles Preferences Reconfiguration Context-awareness 

Notes

Acknowledgments

This work was partially supported by the DFG (German Research Foundation) under grant SCHA1635/2-2 and by the European Commission within the project HyVar (grant agreement H2020-644298).

References

  1. 1.
    Agichtein, E., Brill, E., Dumais, S., Ragno, R.: Learning user interaction models for predicting web search result preferences. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2006. ACM, New York (2006)Google Scholar
  2. 2.
    Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature models. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. Springer, Heidelberg (2005). doi: 10.1007/11431855_34 CrossRefGoogle Scholar
  3. 3.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Preference-based constrained optimization with CP-nets. Comput. Intell. 20, 137–157 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chesta, C., et al.: A toolchain for delta-oriented modeling of software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 497–511. Springer, Cham (2016)Google Scholar
  5. 5.
    da Silva Costa, P.A., Marinho, F.G., de Castro Andrade, R.M., Oliveira, T.: Fixture - A tool for automatic inconsistencies detection in context-aware SPL. In: ICEIS (2015)Google Scholar
  6. 6.
    Darryll Harrison, W.G.: CES 2016: Volkswagen brings gesture control to mass production with the E-Golf Touch (2016). http://media.vw.com/release/1123/
  7. 7.
    Domshlak, C., Rossi, F., Venable, K.B., Walsh, T.: Reasoning about soft constraints, conditional preferences: complexity results and approximation techniques. arXiv (2009)Google Scholar
  8. 8.
    Doyle, J., Thomason, R.H.: Background to qualitative decision theory. AI Mag. 20(2), 55–68 (1999)Google Scholar
  9. 9.
    Fernandes, P., Werner, C., Murta, L.: Feature modeling for context-aware software product lines. In: Seke (2008)Google Scholar
  10. 10.
    GECODE (2015). http://www.gecode.org/
  11. 11.
    Hartmann, H., Trew, T.: Using feature diagrams with context variability to model multiple product lines for software supply chains. In: SPLC IEEE Computer Society (2008)Google Scholar
  12. 12.
    Kang, K.: Analysis, Feature-oriented Domain (FODA): Feasibility Study; Technical report CMU/SEI-90-TR-21 - ESD-90-TR-222. Software Engineering Inst., Carnegie Mellon Univ. (1990)Google Scholar
  13. 13.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Marinho, F.G., Andrade, R.M.C., Werner, C.: A verification mechanism of feature models for mobile and context-aware software product lines. In: Software Components, Architectures and Reuse (SBCARS) (2011)Google Scholar
  15. 15.
    Mauro, J., Nieke, M., Seidl, C., Yu, I.C.: Context aware reconfiguration in software product lines. In: Proceedings of the Tenth International Workshop on Variability Modelling of Software-Intensive Systems - VaMoS 2016 (2016)Google Scholar
  16. 16.
  17. 17.
    Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K.: Visualization and exploration of optimal variants in product line engineering. In: Proceedings of the 17th International Software Product Line Conference, SPLC 2013. ACM, New York (2013)Google Scholar
  18. 18.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74970-7_38 CrossRefGoogle Scholar
  19. 19.
    Ochoa, L., González-Rojas, O., Thüm, T.: Using decision rules for solving conflicts in extended feature models. In: Proceedings of the ACM SIGPLAN International Conference on Software Language Engineering, SLE. ACM, New York (2015)Google Scholar
  20. 20.
    Parra, C., Blanc, X., Duchien, L.: Context awareness for dynamic service-oriented product lines. In: Proceedings of the 13th International Software Product Line Conference, SPLC 2009. Carnegie Mellon University, Pittsburgh (2009)Google Scholar
  21. 21.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations: Principles and Techniques. Springer, New York (2005)CrossRefMATHGoogle Scholar
  22. 22.
    Prud’homme, C., Fages, J.-G., Lorca, X.: Choco3 Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2014)Google Scholar
  23. 23.
    Reiff-Marganiec, S.: A structured approach to VO reconfigurations through policies. In: Proceedings Third Workshop on Formal Aspects of Virtual Organisations. EPTCS, FAVO 2011, Sao Paolo, Brazil, 18 October 2011, vol. 83, pp. 22–31 (2011)Google Scholar
  24. 24.
    Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent meta-search language for MiniZinc. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 376–392. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23219-5_27 Google Scholar
  25. 25.
    Robarts, S.: Volkswagen’s Golf R touch concept shows off the car cockpit of the future (2015). http://www.gizmag.com/volkswagen-golf-r-touch/35472/
  26. 26.
    Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  27. 27.
    Seidl, C., Schaefer, I., Aßmann, U.: Capturing variability in space and time with hyper feature models. In: Proceedings of the Eighth International Workshop on Variability Modelling of Software-Intensive Systems - VaMoS 2014 (2014)Google Scholar
  28. 28.
    Ubayashi, N., Nakajima, S.: Context-aware feature-oriented modeling with an aspect extension of VDM. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2007. ACM, New York (2007)Google Scholar
  29. 29.
    Yoshii, K., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Hybrid collaborative and content-based music recommendation using probabilistic model with latent user preferences. In: ISMIR, vol. 6 (2006)Google Scholar
  30. 30.
    Young, S., Hong, J.-H., Kim, T.-S.: A formal model for user preference. In: Proceedings of IEEE International Conference on Data Mining (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Michael Nieke
    • 1
  • Jacopo Mauro
    • 2
  • Christoph Seidl
    • 1
  • Ingrid Chieh Yu
    • 2
  1. 1.Technische Universität BraunschweigBraunschweigGermany
  2. 2.University of OsloOsloNorway

Personalised recommendations