Advertisement

Tuning Energy Consumption Strategies in the Railway Domain: A Model-Based Approach

  • Davide Basile
  • Felicita Di Giandomenico
  • Stefania Gnesi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9953)

Abstract

Cautious usage of energy resources is gaining great attention nowadays, both from environmental and economical point of view. Therefore, studies devoted to analyze and predict energy consumption in a variety of application sectors are becoming increasingly important, especially in combination with other non-functional properties, such as reliability, safety and availability.

This paper focuses on energy consumption strategies in the railway sector, addressing in particular rail road switches through which trains are guided from one track to another. Given the criticality of their task, the temperature of these devices needs to be kept above certain levels to assure their correct functioning. By applying a stochastic model-based approach, we analyse a family of energy consumption strategies based on thresholds to trigger the activation/deactivation of energy supply. The goal is to offer an assessment framework through which appropriate tuning of threshold-based energy supply solutions can be achieved, so to select the most appropriate one, resulting in a good compromise between energy consumption and reliability level.

Keywords

Railway Station Hybrid Automaton Prioritize Approach Railway Sector Rail Road 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balbo, G.: Introduction to generalized stochastic petri nets. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 83–131. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72522-0_3 CrossRefGoogle Scholar
  3. 3.
    Basile, D., Chiaradonna, S., Giandomenico, F.D., Gnesi, S.: A stochastic model-based approach to analyse reliable energy-saving rail road switch heating systems. J. Rail Transp. Plan. Manag. (2016). http://www.sciencedirect.com/science/article/pii/S2210970616300051
  4. 4.
    Basile, D., Chiaradonna, S., Giandomenico, F., Gnesi, S., Mazzanti, F.: Stochastic model-based analysis of energy consumption in a rail road switch heating system. In: Fantechi, A., Pelliccione, P. (eds.) SERENE 2015. LNCS, vol. 9274, pp. 82–98. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23129-7_7 CrossRefGoogle Scholar
  5. 5.
    Bause, F., Kritzinger, P.S.: Stochastic petri nets: an introduction to the theory. SIGMETRICS Perform. Eval. Rev. 26(2), 2–3 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bernardi, S., Merseguer, J., Petriu, D.C.: Model-Driven Dependability Assessment of Software Systems. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brodowski, D., Komosa, K.: A railroad switch and a method of melting snow and ice in rail road switches (2013). https://data.epo.org/publication-server/rest/v1.0/publication-dates/20131225/patents/EP2677079NWA1/document.html
  8. 8.
  9. 9.
    Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders, W.H., Webster, P.: The möbius modeling tool. In: Proceedings of the 9th International Workshop on Petri Nets and Performance Models, pp. 241–250 (2001)Google Scholar
  10. 10.
    David, R., Alla, H.: On hybrid petri nets. Discrete Event Dyn. Syst. 11(1–2), 9–40 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Di Giandomenico, F., Fantechi, A., Gnesi, S., Itria, M.L.: Stochastic model-based analysis of railway operation to support traffic planning. In: Gorbenko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol. 8166, pp. 184–198. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40894-6_15 CrossRefGoogle Scholar
  12. 12.
    Diab, H.B., Zomaya, A.Y.: Dependable Computing Systems: Paradigms, Performance Issues and Applications. Wiley (2005)Google Scholar
  13. 13.
    Erbes, T., Shukla, S.K., Kachroo, P.: Stochastic learning feedback hybrid automata for dynamic power management in embedded systems. In: SMCia/05, IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, June 2005Google Scholar
  14. 14.
    Ghasemieh, H., Haverkort, B.R., Jongerden, M.R., Remke, A.: Energy resilience modelling for smart houses. In: 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2015, pp. 275–286. IEEE (2015)Google Scholar
  15. 15.
    Mazzanti, F., Spagnolo, G.O., Longa, S., Ferrari, A.: Deadlock avoidance in train scheduling: a model checking approach. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 109–123. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10702-8_8 Google Scholar
  16. 16.
    Qiu, Q., Wu, Q., Pedram, M.: Dynamic power management of complex systems using generalized stochastic petri nets. In: DAC, pp. 352–356 (2000)Google Scholar
  17. 17.
  18. 18.
    Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000. LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001). doi: 10.1007/3-540-44667-2_9 CrossRefGoogle Scholar
  19. 19.
    Karlin, H.M.T. (ed.) An Introduction to Stochastic Modeling (Revised Edition), p. iii. Academic Press, revised edn. (1994). http://www.sciencedirect.com/science/article/pii/B978012684885450001X
  20. 20.
    Trivedi, K.S.: Probability & Statistics With Reliability, Queuing and Computer Science Applications. Wiley (2008)Google Scholar
  21. 21.
    Čaušević, A., Seceleanu, C., Pettersson, P.: Distributed energy management case study: a formal approach to analyzing utility functions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 74–87. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45231-8_6 Google Scholar
  22. 22.
  23. 23.
    Zhu, D., Melhem, R., Mossè, D.: The effects of energy management on reliability in real-time embedded systems. In: IEEE/ACM International Conference on Computer Aided Design, ICCAD 2004, pp. 35–40, November 2004Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Davide Basile
    • 1
  • Felicita Di Giandomenico
    • 1
  • Stefania Gnesi
    • 1
  1. 1.Istituto di Scienza e Tecnologia dell’Informazione “A. Faedo”, Consiglio Nazionale delle Ricerche, ISTI-CNRPisaItaly

Personalised recommendations