Advertisement

Direct Estimation of Fiber Orientations Using Deep Learning in Diffusion Imaging

  • Simon KoppersEmail author
  • Dorit Merhof
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10019)

Abstract

An effective technique for investigating human brain connectivities, is the reconstruction of fiber orientation distribution functions based on diffusion-weighted MRI. To reconstruct fiber orientations, most current approaches fit a simplified diffusion model, resulting in an approximation error. We present a novel approach for estimating the fiber orientation directly from raw data, by converting the model fitting process into a classification problem based on a convolutional Deep Neural Network, which is able to identify correlated diffusion information within a single voxel. Wevaluate our approach quantitatively on realistic synthetic data as well as on real data and achieve reliable results compared to a state-of-the-art method. This approach is even capable to relieable reconstruct three fiber crossing utilizing only 10 gradient acquisitions.

Keywords

Diffusion Tensor Image Synthetic Data Fiber Orientation Deep Learn Fiber Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Canales-Rodríguez, E.J., Melie-García, L., Iturria-Medina, Y.: Mathematical description of q-space in spherical coordinates: exact q-ball imaging. Magn. Reson. Med. 61(6), 1350–1367 (2009)CrossRefGoogle Scholar
  2. 2.
    Jones, D.K., Knösche, T.R., Turner, R.: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73, 239–254 (2013)CrossRefGoogle Scholar
  3. 3.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, J.: High Angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)CrossRefGoogle Scholar
  4. 4.
    Golkov, D., Sämann, P., Sperl, J.I., Sprenger, T., Czisch, M., Menzel, M.I., Gómez, P.A., Haase, A., Brox, T., Cremers, D.: Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)CrossRefGoogle Scholar
  5. 5.
    Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34(11), 2747–2766 (2013)CrossRefGoogle Scholar
  6. 6.
    Neher, P.F., Götz, M., Norajitra, T., Weber, C., Maier-Hein, K.H.: A machine learning based approach to fiber tractography using classifier voting. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 45–52. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24553-9_6 CrossRefGoogle Scholar
  7. 7.
    Schultz, T.: Learning a reliable estimate of the number of fiber directions in diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 493–500. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33454-2_61 CrossRefGoogle Scholar
  8. 8.
    Schultz, T., Westin, C.-F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 674–681. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15705-9_82 CrossRefGoogle Scholar
  9. 9.
    Seunarine, K.K., Alexander, D.C.: Multiple fibers: beyond the diffusion tensor. In: Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy, vol. 1, pp. 55–72 (2009)Google Scholar
  10. 10.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)CrossRefGoogle Scholar
  11. 11.
    Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for MATLAB. In: Proceedings of 23rd ACM International Conference on Multimedia, pp. 689–692. ACM (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Institute of Imaging and Computer VisionRWTH Aachen UniversityAachenGermany

Personalised recommendations