Advertisement

Detecting Osteophytes in Radiographs of the Knee to Diagnose Osteoarthritis

  • Jessie ThomsonEmail author
  • Terence O’Neill
  • David Felson
  • Tim Cootes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10019)

Abstract

We present a fully automatic system for identifying osteophytes on knee radiographs, and for estimating the widely used Kellgren-Lawrence (KL) grade for Osteoarthritis (OA). We have compared three advanced modelling and texture techniques. We found that a Random Forest trained using Haar-features achieved good results, but the optimal results are obtained by combining shape modelling and texture features. The system achieves the best reported performance for identifying osteophytes (AUC: 0.85), for measuring KL grades and for classifying OA (AUC: 0.93), with an error rate half that of the previous best method.

Keywords

Medical image analysis Computer-aided diagnosis 

Notes

Acknowledgements

This report includes independent research funded by the National Institute for Health Research Biomedical Research Unit Funding Scheme. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

References

  1. 1.
    Chen, A., Gupte, C., Akhtar, K., Smith, P., Cobb, J.: The global economic cost of osteoarthritis: how the UK compares. Arthritis 2012, Article ID 698709, 6 (2012). doi: 10.1155/2012/698709
  2. 2.
    Oka, H., Muraki, S., Akune, T., Nakamura, K., Kawaguchi, H.: Normal and threshold values of radiographic parameters for knee osteoarthrits using a computer-assisted measuring system (KOACAD): the ROAD study. J. Orthop. Sci. 15, 781–789 (2010)CrossRefGoogle Scholar
  3. 3.
    Thomson, J., O’Neill, T., Felson, D., Cootes, T.: Automated shape and texture analysis for detection of osteoarthritis from radiographs of the knee. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 127–134. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24571-3_16 Google Scholar
  4. 4.
    Lindner, C., Thiagarajah, S., Wilkinson, J.M., Wallis, G.A., Cootes, T.F.: Accurate bone segmentation in 2D radiographs using fully automatic shape model matching based on regression-voting. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 181–189. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_23 CrossRefGoogle Scholar
  5. 5.
    Lester, G.: Clinical research in OA. The NIH osteoarthritis initiative. J. Musculoskelet. Neuronal Interact. 8(4), 313–314 (2008)MathSciNetGoogle Scholar
  6. 6.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical report, University of Manchester (2004)Google Scholar
  7. 7.
    Kellgren, J.H., Lawrence, J.S.: Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16(4), 494–502 (1957)CrossRefGoogle Scholar
  8. 8.
    Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P.: Robust and accurate shape model fitting using random forest regression voting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 278–291. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33786-4_21 CrossRefGoogle Scholar
  9. 9.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Riddle, D.I., Jiranek, W.A., Hull, J.R.: Validity and reliability of radiographic knee osteoarthritis measures by arthroplasty surgeons. Orthopedics 36(1), e25–e32 (2013)CrossRefGoogle Scholar
  11. 11.
    Hayashi, D., Gusenburg, J., Roemer, F.W., Hunter, D.J., Li, L., Guermazi, A.: Reliability of semiquantitative assessment of osteophytes and subchondral cysts on tomosynthesis images by radiologists with different levels of expertise. Diagn. Interv. Radiol. 20, 353–359 (2014)CrossRefGoogle Scholar
  12. 12.
    Altman, R.D., Hochberg, M., Murphy Jr., W.A., Wolfe, F., Lequesne, M.: Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage 3, A3–A70 (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jessie Thomson
    • 1
    • 2
    Email author
  • Terence O’Neill
    • 2
    • 3
  • David Felson
    • 2
    • 3
    • 4
  • Tim Cootes
    • 1
  1. 1.Centre for Imaging SciencesUniversity of ManchesterManchesterUK
  2. 2.NIHR Manchester Musculoskeletal BRUCentral Manchester NHS Foundation Trust, MAHSCManchesterUK
  3. 3.Arthritis Research UK Centre for EpidemiologyUniversity of ManchesterManchesterUK
  4. 4.Boston UniversityBostonUSA

Personalised recommendations