Advertisement

Fast Neuroimaging-Based Retrieval for Alzheimer’s Disease Analysis

  • Xiaofeng Zhu
  • Kim-Han Thung
  • Jun Zhang
  • Dinggang ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10019)

Abstract

This paper proposes a framework of fast neuroimaging-based retrieval and AD analysis, by three key steps: (1) landmark detection, which efficiently extracts landmark-based neuroimaging features without the need of nonlinear registration in testing stage; (2) landmark selection, which removes redundant/noisy landmarks via proposing a feature selection method that considers structural information among landmarks; and (3) hashing, which converts high-dimensional features of subjects into binary codes, for efficiently conducting approximate nearest neighbor search and diagnosis of AD. We have conducted experiments on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and demonstrated that our framework could achieve higher performance than the comparison methods, in terms of accuracy and speed (at least 100 times faster).

Notes

Acknowledgements

This work was supported in part by NIH grants (EB006733, EB008374, EB009634, MH100217, AG041721, AG042599). Xiaofeng Zhu was supported in part by the National Natural Science Foundation of China under grants 61573270 and 61263035.

References

  1. 1.
    Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)CrossRefGoogle Scholar
  2. 2.
    Huang, L., Jin, Y., Gao, Y., Thung, K., Shen, D., Alzheimer’s Disease Neuroimaging Initiative: Longitudinal clinical score prediction in Alzheimers disease with soft-split sparse regression based random forest. Neurobiol. Aging 46, 180–191 (2016)CrossRefGoogle Scholar
  3. 3.
    Hutton, C., De Vita, E., Ashburner, J., Deichmann, R., Turner, R.: Voxel-based cortical thickness measurements in MRI. Neuroimage 40(4), 1701–1710 (2008)CrossRefGoogle Scholar
  4. 4.
    Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: ICCV, pp. 2130–2137 (2009)Google Scholar
  5. 5.
    Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML, pp. 1–8 (2011)Google Scholar
  6. 6.
    Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)CrossRefGoogle Scholar
  7. 7.
    Thung, K., Wee, C., Yap, P., Shen, D.: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. NeuroImage 91, 386–400 (2014)CrossRefGoogle Scholar
  8. 8.
    Thung, K., Wee, C., Yap, P., Shen, D.: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans. Brain Struct. Funct. 1–17 (2015)Google Scholar
  9. 9.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760 (2009)Google Scholar
  10. 10.
    Zhang, C., Qin, Y., Zhu, X., Zhang, J., Zhang, S.: Clustering-based missing value imputation for data preprocessing. In: INDIN, pp. 1081–1086 (2006)Google Scholar
  11. 11.
    Zhang, J., Gao, Y., Gao, Y., Munsell, B., Shen, D.: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging PP(99), 1 (2016)Google Scholar
  12. 12.
    Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  14. 14.
    Zhu, X., Huang, Z., Cheng, H., Cui, J., Shen, H.T.: Sparse hashing for fast multimedia search. ACM Trans. Inf. Syst. 31(2), 9 (2013)CrossRefGoogle Scholar
  15. 15.
    Zhu, X., Huang, Z., Shen, H.T., Zhao, X.: Linear cross-modal hashing for efficient multimedia search. In: ACM Multimedia, pp. 143–152 (2013)Google Scholar
  16. 16.
    Zhu, X., Suk, H.-I., Shen, D.: A novel multi-relation regularization method for regression and classification in AD diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 401–408. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10443-0_51 Google Scholar
  17. 17.
    Zhu, X., Suk, H.I., Wang, L., Lee, S.W., Shen, D., et al.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. (2015)Google Scholar
  18. 18.
    Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737–3750 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Xiaofeng Zhu
    • 1
  • Kim-Han Thung
    • 1
  • Jun Zhang
    • 1
  • Dinggang Shen
    • 1
    Email author
  1. 1.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations