Advertisement

Learning for Graph-Based Sensorless Freehand 3D Ultrasound

  • Loïc TetrelEmail author
  • Hacène Chebrek
  • Catherine Laporte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10019)

Abstract

Sensorless freehand 3D ultrasound (US) uses speckle decorrelation to estimate small rigid motions between pairs of 2D images. Trajectory estimation combines these motion estimates to obtain the position each image relative to the first. This is prone to the accumulation of measurement bias. Whereas previous work concentrated on correcting biases at the source, this paper proposes to reduce error accumulation by carefully choosing the set of measurements used for trajectory estimation. An undirected graph is created with frames as vertices and motion measurements as edges. Using constrained shortest paths in the graph, random trajectories are generated and averaged to obtain trajectory estimate and uncertainty. To improve accuracy, a Gaussian process regressor is trained on tracked US sequences to predict systematic motion measurement error, which is then used to weigh the edges of the graph. Results on speckle phantom imagery show significantly improved trajectory estimates in comparison with the state-of-the-art, promising accurate volumetric reconstruction.

Keywords

Freehand 3D ultrasound Speckle decorrelation Sensorless reconstruction Measurement selection Gaussian process regression 

References

  1. 1.
    Afsham, N., et al.: A generalized correlation-based model for out-of-plane motion estimation in freehand ultrasound. IEEE Trans. Med. Imaging 33(1), 186–199 (2014)CrossRefGoogle Scholar
  2. 2.
    Afsham, N., et al.: Nonlocal means filter-based speckle tracking. IEEE Trans. Ultrason. Ferroelectr. 62(8), 1501–1515 (2015)CrossRefGoogle Scholar
  3. 3.
    Chen, J.F., et al.: Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997)CrossRefGoogle Scholar
  4. 4.
    Conrath, J., Laporte, C.: Towards improving the accuracy of sensorless freehand 3D ultrasound by learning. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds.) MLMI 2012. LNCS, vol. 7588, pp. 78–85. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35428-1_10 CrossRefGoogle Scholar
  5. 5.
    van De Kraats, E.: Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans. Med. Imaging 24(9), 1177–1189 (2005)CrossRefGoogle Scholar
  6. 6.
    Gee, A.H., et al.: Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle. Med. Image Anal. 10(2), 137–149 (2006)CrossRefGoogle Scholar
  7. 7.
    Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of CVPR, vol. 1, pp. 684–691 (2004)Google Scholar
  8. 8.
    Housden, R.J., et al.: Sensorless reconstruction of unconstrained freehand 3D ultrasound data. Ultrasound Med. Biol. 33(3), 408–419 (2007)CrossRefGoogle Scholar
  9. 9.
    Housden, R., et al.: Rotational motion in sensorless freehand three-dimensional ultrasound. Ultrasonics 48(5), 412–422 (2008)CrossRefGoogle Scholar
  10. 10.
    Laporte, C., Arbel, T.: Combinatorial and probabilistic fusion of noisy correlation measurements for untracked freehand 3-D ultrasound. IEEE Trans. Med. Imaging 27(7), 984–994 (2008)CrossRefGoogle Scholar
  11. 11.
    Laporte, C., Arbel, T.: Measurement selection in untracked freehand 3D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 127–134. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15705-9_16 CrossRefGoogle Scholar
  12. 12.
    Laporte, C., Arbel, T.: Learning to estimate out-of-plane motion in ultrasound imagery of real tissue. Med. Image Anal. 15(2), 202–213 (2011)CrossRefGoogle Scholar
  13. 13.
    Li, P.C., et al.: Tissue motion and elevational speckle decorrelation in freehand 3D ultrasound. Ultrason. Imaging 24(1), 1–12 (2002)CrossRefGoogle Scholar
  14. 14.
    Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  15. 15.
    Rousseau, F., et al.: Confhusius: a robust and fully automatic calibration method for 3D freehand ultrasound. Med. Image Anal. 9, 25–38 (2005)CrossRefGoogle Scholar
  16. 16.
    Rousseau, F., et al.: A novel temporal calibration method for 3D ultrasound. IEEE Trans. Med. Imaging 25(8), 1108–1112 (2006)CrossRefGoogle Scholar
  17. 17.
    Tuthill, T.A., et al.: Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology 209(2), 575–582 (1998)CrossRefGoogle Scholar
  18. 18.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. 13(4), 376–380 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Loïc Tetrel
    • 1
    Email author
  • Hacène Chebrek
    • 1
  • Catherine Laporte
    • 1
  1. 1.Department of Electrical EngineeringÉcole de technologie supérieureMontréalCanada

Personalised recommendations