Relationship Between the Reprogramming Determinants of Boolean Networks and Their Interaction Graph

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)

Abstract

In this paper, we address the formal characterization of targets triggering cellular trans-differentiation in the scope of Boolean networks with asynchronous dynamics. Given two fixed points of a Boolean network, we are interested in all the combinations of mutations which allow to switch from one fixed point to the other, either possibly, or inevitably. In the case of existential reachability, we prove that the set of nodes to (permanently) flip are only and necessarily in certain connected components of the interaction graph. In the case of inevitable reachability, we provide an algorithm to identify a subset of possible solutions.

References

  1. 1.
    Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.: Model checking to assess T-helper cell plasticity. Front. Bioeng. Biotechnol. 2 (2015)Google Scholar
  2. 2.
    Aracena, J.: Maximum number of fixed points in regulatory boolean networks. Bull. Math. Biol. 70(5), 1398–1409 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chang, R., Shoemaker, R., Wang, W.: Systematic search for recipes to generate induced pluripotent stem cells. PLoS Comput. Biol. 7(12), e1002300 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12982-2_10 Google Scholar
  5. 5.
    Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor. Comput. Sci. 147(1&2), 117–136 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Crespo, I., Perumal, T.M., Jurkowski, W., del Sol, A.: Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst. Biol. 7(1), 140 (2013)CrossRefGoogle Scholar
  7. 7.
    del Sol, A., Buckley, N.J.: Concise review: a population shift view of cellular reprogramming. Stem Cells 32(6), 1367–1372 (2014)CrossRefGoogle Scholar
  8. 8.
    Gao, Z., Chen, X., Başar, T.: On the stability of conjunctive boolean networks, March 2016Google Scholar
  9. 9.
    Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462(7273), 587–594 (2009)CrossRefGoogle Scholar
  10. 10.
    Jo, J., Hwang, S., Kim, H.J., Hong, S., Lee, J.E., Lee, S.-G., Baek, A., Han, H., Lee, J.I., Lee, I., et al.: An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency. Nucleic Acids Res. 44(3), 1203–1215 (2016)CrossRefGoogle Scholar
  11. 11.
    Paulevé, L.: Goal-oriented reduction of automata networks. In: Bartocci, E., Lio, P., Paoletti, N., Ogbuji, B. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 252–272. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45177-0_16 CrossRefGoogle Scholar
  12. 12.
    Rackham, O.J.L., Firas, J., Fang, H., Oates, M.E., Holmes, M.L., Knaupp, A.S., Suzuki, H., Nefzger, C.M., Daub, C.O., Shin, J.W., Petretto, E., Forrest, A.R.R., Hayashizaki, Y., Polo, J.M., Gough, J.: A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48(3), 331–335 (2016)CrossRefGoogle Scholar
  13. 13.
    Richard, A.: Positive circuits and maximal number of fixed points in discrete dynamical systems. Discrete Appl. Math. 157(15), 3281–3288 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math. 44(4), 378–392 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Takahashi, K., Yamanaka, S.: A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell. Biol. 17(3), 183–193 (2016)CrossRefGoogle Scholar
  16. 16.
    Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)CrossRefGoogle Scholar
  17. 17.
    Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv. Appl. Math. 41(3), 335–350 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.LRI UMR 8623, Univ. Paris-Sud – CNRS, Université Paris-SaclayOrsayFrance
  2. 2.LSV, ENS Cachan, Inria, CNRS, Université Paris-SaclayCachanFrance

Personalised recommendations