Accelerated Simulation of Hybrid Biological Models with Quasi-Disjoint Deterministic and Stochastic Subnets

  • Mostafa HerajyEmail author
  • Monika Heiner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)


Computational biological models are indispensable tools for in silico hypothesis testing. But with the increasing complexity of biological systems, traditional simulators become inefficient to tackle emerging computational challenges. Hybrid simulation, which combines deterministic and stochastic parts, is a promising direction to deal with such challenges. However, currently existing algorithms of hybrid simulation are impractical for implementing real and complex biological systems. One reason for such limitation is that the performance of hybrid simulation not only relies on the number of stochastic events, but also on the type as well as the efficiency of the deterministic solver. In this paper, a new method is proposed for improving the performance of hybrid simulators by reducing the frequent reinitialisation of the deterministic solver. The proposed approach works well with models that contain a substantial number of stochastic events and higher numbers of continuous variables with limited connections between the deterministic and stochastic regimes. We tested these improvements on a number of case studies and it turns out that, for certain examples, the amended algorithm is ten times faster than the exact method.


Accelerated hybrid simulation Deterministic and stochastic simulation Dependency graph Computational modelling 



This work has been partially funded by the GE-SEED grant (7934) which is administrated by STDF(Science and Technology Development Fund, Egypt) and DAAD (German Academic Exchange Service). We also acknowledge the helpful comments of the anonymous reviewers for improving a previous version of the paper.


  1. 1.
    Alfonsi, A., Cancès, E., Turinici, G., Ventura, B., Huisinga, W.: Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. ESAIM: Proc. 14, 1–13 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barik, D., Baumann, W.T., Paul, M.R., Novak, B., Tyson, J.J.: A model of yeast cell-cycle regulation based on multisite phosphorylation. Molecular Syst. Biol. 6(1), 405 (2010)Google Scholar
  3. 3.
    Blätke, M., Heiner, M., Marwan, W.: BioModel engineering with Petri nets, chap. 7, pp. 141–193. Elsevier Inc. (2015).
  4. 4.
    Cao, Y., Gillespie, D., Petzold, L.: Adaptive explicit-implicit tau-leaping method with automatic tau selection. J. Chem. Phys 126(22), 224101 (2007)CrossRefGoogle Scholar
  5. 5.
    Gibson, M., Bruck, J.: Exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 105, 1876–89 (2000)CrossRefGoogle Scholar
  6. 6.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  7. 7.
    Gillespie, D.: Markov Processes: An Introduction for Physical Scientists. Academic Press, San Diego (1991)zbMATHGoogle Scholar
  8. 8.
    Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Rev. Phys. Chem. 58(1), 35–55 (2007)CrossRefGoogle Scholar
  9. 9.
    Griffith, M., Courtney, T., Peccoud, J., Sanders, W.H.: Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics 22(22), 2782–2789 (2006)CrossRefGoogle Scholar
  10. 10.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computer Mathematics. Springer Series in Computer Mathematics, vol. 14. Springer, Berlin (1996)zbMATHGoogle Scholar
  11. 11.
    Haseltine, E., Rawlings, J.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)CrossRefGoogle Scholar
  12. 12.
    Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Hellander, A., Lötstedt, P.: Hybrid method for the chemical master equation. J. Comput. Phys. 227(1), 100–122 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks. J. Nonlinear Anal. Hybrid Syst. 6(4), 942–959 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herajy, M., Heiner, M.: A steering server for collaborative simulation of quantitative Petri nets. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 374–384. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Herajy, M., Liu, F., Rohr, C.: Coloured hybrid Petri nets for systems biology. In: Proceedings of the 5th International Workshop on Biological Processes & Petri Nets (BioPPN), Satellite Event of PETRI NETS 2014, CEUR Workshop Proceedings, vol. 1159, pp. 60–76 (2014)Google Scholar
  17. 17.
    Herajy, M., Schwarick, M.: A hybrid Petri net model of the eukaryotic cell cycle. In: Proceedings of the 3rd International Workshop on Biological Processes and Petri Nets (BioPPN), Satellite Event of PETRI NETS 2012, CEUR Workshop Proceedings, vol. 852, pp. 29–43 (2012).
  18. 18.
    Herajy, M., Heiner, M.: Modeling and simulation of multi-scale environmental systems with generalized hybrid Petri nets. Front. Environ. Sci. 3(53) (2015)Google Scholar
  19. 19.
    Herajy, M., Schwarick, M., Heiner, M.: Hybrid Petri nets for modelling the eukaryotic cell cycle. In: Koutny, M., Aalst, W.M.P., Yakovlev, A. (eds.) ToPNoC VIII. LNCS, vol. 8100, pp. 123–141. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40465-8_7 CrossRefGoogle Scholar
  20. 20.
    Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Iwamoto, K., Hamada, H., Eguchi, Y., Okamoto, M.: Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. PLoS ONE 9, 1–12 (2014)CrossRefGoogle Scholar
  22. 22.
    Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. U.S.A. 106(16), 6471–6476 (2009)CrossRefGoogle Scholar
  23. 23.
    Kiehl, T., Mattheyses, R., Simmons, M.: Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322 (2004)CrossRefGoogle Scholar
  24. 24.
    Liu, Z., Pu, Y., Li, F., Shaffer, C.A., Hoops, S., Tyson, J.J., Cao, Y.: Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle. J. Chem. Phys. 136(3), 034105 (2012)CrossRefGoogle Scholar
  25. 25.
    Mcadams, H., Arkin, A.: It’s a noisy business!. Trends Genet. 15(2), 65–69 (1999)CrossRefGoogle Scholar
  26. 26.
    Pahle, J.: Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief Bioinform. 10(1), 53–64 (2009)CrossRefGoogle Scholar
  27. 27.
    Rathinam, M., Petzold, L., Cao, Y., Gillespie, D.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119, 12784–12794 (2003)CrossRefGoogle Scholar
  28. 28.
    Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys 122(5), 54103 (2005)CrossRefGoogle Scholar
  29. 29.
    Soliman, S., Heiner, M.: A unique transformation from ordinary differential equations to reaction networks. PLoS ONE 5(12), e14284 (2010)CrossRefGoogle Scholar
  30. 30.
    Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tyson, J.J., Novk, B.: Irreversible transitions, bistability and checkpoint controls in the eukaryotic cell cycle: a systems-level understanding, Chapt. 14. In: Walhout, A.M., Vidal, M., Dekker, J. (eds.) Handbook of Systems Biology, pp. 265–285. Academic Press, San Diego (2013)CrossRefGoogle Scholar
  32. 32.
    Vilar, J., Kueh, H., Barkai, N., Leibler, S.: Mechanisms of noise resistance in genetic oscillators. PNAS 99, 59885992 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Faculty of SciencePort Said UniversityPort SaidEgypt
  2. 2.Computer Science InstituteBrandenburg University of TechnologyCottbusGermany

Personalised recommendations