Logic-Based Multi-objective Design of Chemical Reaction Networks

  • Luca Bortolussi
  • Alberto Policriti
  • Simone Silvetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)


The design of genetic or protein networks that satisfy a given set of behavioural specifications is one of the main challenges of synthetic biology. Model-based design is a natural choice in this respect. Here we consider the problem of tuning parameters of a stochastic model to force one or more behavioural goals to hold. In particular, we consider several objectives specified by signal temporal logic formulae, and we look for a parameter set making their satisfaction probability as large as possible. This formalisation results in a multi-objective optimisation problem, which we solve by considering an optimisation scheme combining satisfaction probability and average robustness of STL properties, leveraging state of the art multi-objective optimisation routines.


System design Robustness Multi-objective optimization Temporal logic 


  1. 1.
    Baier, C.: On algorithmic verification methods for probabilistic systems. Universität Mannheim (1998)Google Scholar
  2. 2.
    Balázsi, G., van Oudenaarden, A., Collins, J.J.: Cellular decision making, biological noise: from microbes to mammals. Cell 144(6), 910–925 (2011)CrossRefGoogle Scholar
  3. 3.
    Ballarini, P., Guerriero, M.L.: Query-based verification of qualitative trends and oscillations in biochemical systems. Theor. Comput. Sci. 411(20), 2019–2036 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Billingsley, P.: Convergence of Probability Measures. Wiley, NewYork (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)CrossRefGoogle Scholar
  7. 7.
    Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Brauer, F.: Compartmental models in epidemiology. In: Mathematical epidemiology, pp. 19–79. Springer (2008)Google Scholar
  9. 9.
    Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006). doi: 10.1007/11672142_26 CrossRefGoogle Scholar
  10. 10.
    Coello, C.A.C., Lamont, G.B.: Applications of multi-objective evolutionary algorithms, vol. 1. World Scientific (2004)Google Scholar
  11. 11.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, New York (2001)zbMATHGoogle Scholar
  12. 12.
    Deb, K.: Multi-objective optimization. In: Search Methodologies, pp. 403–449. Springer (2014)Google Scholar
  13. 13.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi: 10.1007/3-540-45356-3_83 CrossRefGoogle Scholar
  14. 14.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 50–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 317–332. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403(6767), 339–342 (2000)Google Scholar
  18. 18.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  19. 19.
    Henzinger, T.A., Jobstmann, B., Wolf, V.: Formalisms for specifying Markovian population models. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 3–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Norris, J.R.: Markov chains, Number 2008. Cambridge University Press (1998)Google Scholar
  22. 22.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  23. 23.
    Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99(20), 12795–12800 (2002)CrossRefGoogle Scholar
  24. 24.
    Zhou, A., Bo-Yang, Q., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  25. 25.
    Zuluaga, M., Sergent, G., Krause, A., Püschel, M.: Active learning for multi-objective optimization. ICML 1(28), 462–470 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Luca Bortolussi
    • 1
    • 2
    • 3
  • Alberto Policriti
    • 4
    • 6
  • Simone Silvetti
    • 4
    • 5
  1. 1.DMGUniversity of TriesteTriesteItaly
  2. 2.Modelling and Simulation GroupSaarland UniversitySaarbrückenGermany
  3. 3.CNR-ISTIPisaItaly
  4. 4.DimaUniversity of UdineUdineItaly
  5. 5.Esteco SpATriesteItaly
  6. 6.Istituto di Genomica ApplicataUdineItaly

Personalised recommendations