On Observability and Reconstruction of Promoter Activity Statistics from Reporter Protein Mean and Variance Profiles

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9957)

Abstract

Reporter protein systems are widely used in biology for the indirect quantitative monitoring of gene expression activity over time. At the level of population averages, the relationship between the observed reporter concentration profile and gene promoter activity is established, and effective methods have been introduced to reconstruct this information from the data. At single-cell level, the relationship between population distribution time profiles and the statistics of promoter activation is still not fully investigated, and adequate reconstruction methods are lacking.

This paper develops new results for the reconstruction of promoter activity statistics from mean and variance profiles of a reporter protein. Based on stochastic modelling of gene expression dynamics, it discusses the observability of mean and autocovariance function of an arbitrary random binary promoter activity process. Mathematical relationships developed are explicit and nonparametric, i.e. free of a priori assumptions on the laws governing the promoter process, thus allowing for the decoupled analysis of the switching dynamics in a subsequent step. The results of this work constitute the essential tools for the development of promoter statistics and regulatory mechanism inference algorithms.

Keywords

Gene regulation Doubly stochastic process Spectral analysis 

References

  1. 1.
    Bowsher, C.G., Voliotis, M., Swain, P.S.: The fidelity of dynamic signaling by noisy biomolecular networks. PLoS Comput. Biol. 9(3), e1002965 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cinquemani, E.: Reconstruction of promoter activity statistics from reporter protein population snapshot data. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1471–1476, December 2015Google Scholar
  3. 3.
    Cinquemani, E.: Reconstructing statistics of promoter switching from reporter protein population snapshot data. In: Abate, A., et al. (eds.) HSB 2015. LNCS, vol. 9271, pp. 3–19. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26916-0_1 CrossRefGoogle Scholar
  4. 4.
    De Nicolao, G., Sparacino, G., Cobelli, C.: Nonparametric input estimation in physiological systems: problems, methods, and case studies. Automatica 33(5), 851–870 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Friedman, N., Cai, L., Xie, X.S.: Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006)CrossRefGoogle Scholar
  6. 6.
    Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., Allgower, F.: Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinform. 12(1), 125 (2011)CrossRefMATHGoogle Scholar
  7. 7.
    Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–735 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hespanha, J.: Modelling and analysis of stochastic hybrid systems. IEE Proc. Control Theor. Appl. 153(5), 520–535 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Jong, H., Ranquet, C., Ropers, D., Pinel, C., Geiselmann, J.: Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Syst. Biol. 4(1), 55 (2010)CrossRefGoogle Scholar
  10. 10.
    Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Gen. 6, 451–464 (2005)CrossRefGoogle Scholar
  11. 11.
    Koopmans, L.H.: The Spectral Analysis of Time Series. Probability and Mathematical Statistics. Academic Press, San Diego (1995)MATHGoogle Scholar
  12. 12.
    Lindquist, A., Picci, G.: Linear Stochastic Systems - A Geometric Approach to Modeling, Estimation and Identification. Springer, Heidelberg (2015)MATHGoogle Scholar
  13. 13.
    Munsky, B., Trinh, B., Khammash, M.: Listening to the noise: Random fluctuations reveal gene network parameters. Mol. Syst. Biol. 5 (2009). Article ID 318Google Scholar
  14. 14.
    Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339(6119), 584–587 (2013)CrossRefGoogle Scholar
  15. 15.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill Series in Electrical Engineering. McGraw-Hill, New York (1991)MATHGoogle Scholar
  16. 16.
    Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2(2), 157–175 (2005)CrossRefGoogle Scholar
  17. 17.
    Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: Software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)CrossRefGoogle Scholar
  18. 18.
    Stefan, D., Pinel, C., Pinhal, S., Cinquemani, E., Geiselmann, J., de Jong, H.: Inference of quantitative models of bacterial promoters from time-series reporter gene data. PLoS Comput. Biol. 11(1), e1004028 (2015)CrossRefGoogle Scholar
  19. 19.
    Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. PNAS 21(109), 8340–8345 (2012)CrossRefGoogle Scholar
  20. 20.
    Zechner, C., Unger, M., Pelet, S., Peter, M., Koeppl, H.: Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11, 197–202 (2014)CrossRefGoogle Scholar
  21. 21.
    Zulkower, V., Page, M., Ropers, D., Geiselmann, J., de Jong, H.: Robust reconstruction of gene expression profiles from reporter gene data using linear inversion. Bioinformatics 31(12), i71–i79 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Inria Grenoble – Rhône-AlpesSt. Ismier CedexFrance

Personalised recommendations