Skip to main content

Human Activity Recognition in a Smart Home Environment with Stacked Denoising Autoencoders

  • Conference paper
  • First Online:
Web-Age Information Management (WAIM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9998))

Included in the following conference series:


Activity recognition is an important step towards automatically measuring the functional health of individuals in smart home settings. Since the inherent nature of human activities is characterized by a high degree of complexity and uncertainty, it poses a great challenge to build a robust activity recognition model. This study aims to exploit deep learning techniques to learn high-level features from the binary sensor data under the assumption that there exist discriminant latent patterns inherent in the low-level features. Specifically, we first adopt a stacked autoencoder to extract high-level features, and then integrate feature extraction and classifier training into a unified framework to obtain a jointly optimized activity recognizer. We use three benchmark datasets to evaluate our method, and investigate two different original sensor data representations. Experimental results show that the proposed method achieves better recognition rate and generalizes better across different original feature representations compared with other four competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Cook, D.J.: Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 27, 32–38 (2010)

    Article  Google Scholar 

  3. Ordóñez, F., de Toledo, P., Sanchis, A.: Sensor-based Bayesian detection of anomalous living patterns in a home setting. Pers. Ubiquit. Comput. 19, 259–270 (2015)

    Article  Google Scholar 

  4. Suryadevara, N.K., Mukhopadhyay, S.C.: Determining wellness through an ambient assisted living environment. IEEE Intell. Syst. 29, 30–37 (2014)

    Article  Google Scholar 

  5. Liu, L., Peng, Y.X., Wang, S., Huang, Z.G., Liu, M.: Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors. Inf. Sci. 340–341, 41–57 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: a new partnership. IEEE Trans. Cybern. 43, 820–828 (2013)

    Article  Google Scholar 

  7. Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive Mob. Comput. 10, 138–154 (2014)

    Article  Google Scholar 

  8. Tapia, E., Intille, S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: 11th IEEE International Symposium on Wearable Computers, pp. 37–40. IEEE Press, New York (2007)

    Google Scholar 

  9. Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hähnel, D.: Inferring activities from interactions with objects. IEEE Pervas. Comput. 3, 50–57 (2004)

    Article  Google Scholar 

  10. van Kasteren, T., Englebienne, G., Kröse, B.: An activity monitoring system for elderly care using generative and discriminative models. Pers. Ubiquit. Comput. 14, 489–498 (2010)

    Article  Google Scholar 

  11. Liu, L., Peng, Y.X., Huang, Z.G., Liu, M.: Sensor-based human activity recognition system with a multilayered model using time series shapelets. Knowl. Based Syst. 90, 138–152 (2015)

    Article  Google Scholar 

  12. Plötz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in ubiquitous computing. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1729–1734. AAAI Press, California (2011)

    Google Scholar 

  13. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  14. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C 42, 790–808 (2012)

    Article  Google Scholar 

  15. Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.: Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquit. Comput. 14, 645–662 (2010)

    Article  Google Scholar 

  16. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Reiss, A., Hendeby, G., Stricker, D.: A competitive approach for human activity recognition on smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN, Belgium, pp. 455–460 (2013)

    Google Scholar 

  18. Wang, A.G., Chen, G.L., Yang, J., Zhao, S.H., Chang, C.Y.: A comparative study on human activity recognition using inertial sensors in a smartphone. IEEE Sens. J. 16, 4566–4578 (2016)

    Article  Google Scholar 

  19. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 8th International Conference on Intelligent Environments, pp. 214–221. IEEE Press, New York (2012)

    Google Scholar 

  20. Kim, S.C., Jeong, Y.S., Park, S.O.: RFID-based indoor location tracking to ensure the safety of the elderly in smart home environments. Pers. Ubiquit. Comput. 17, 1699–1707 (2013)

    Article  Google Scholar 

  21. Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 1–9, ACM Press, New York (2008)

    Google Scholar 

  22. Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf. Technol. Biol. 14, 274–283 (2010)

    Article  Google Scholar 

  23. Wilson, D.H., Atkeson, C.G.: Simultaneous tracking and activity recognition (star) using many anonymous, binary sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Bhattacharya, S., Nurmi, P., Hammerla, N., Plötz, T.: Using unlabeled data in a sparse coding framework for human activity recognition. Pervasive Mob. Comput. 15, 242–262 (2014)

    Article  Google Scholar 

  25. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM Press, New York (2008)

    Google Scholar 

  26. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, pp. 153–160. MIT Press, Cambridge (2007)

    Google Scholar 

  29. van Kasteren, T., Englebienne, G., Kröse, J.A.B.: Human activity recognition from wireless sensor network data: benchmark and software. In: Chen, L., Nugent, C., Biswas, J., Hoey, J. (eds.) Activity Recognition in Pervasive Intelligent Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4, pp. 165–186. Atlantis, Amsterdam (2011)

    Chapter  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of China (No. 61472057) and China Postdoctoral Science Foundation (No. 2016M592046).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guilin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, A., Chen, G., Shang, C., Zhang, M., Liu, L. (2016). Human Activity Recognition in a Smart Home Environment with Stacked Denoising Autoencoders. In: Song, S., Tong, Y. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9998. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47120-4

  • Online ISBN: 978-3-319-47121-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics