Skip to main content

Brain-Inspired Obstacle Detection Based on the Biological Visual Pathway

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9919)

Abstract

Obstacle detection is crucial for intelligent systems (e.g. robots, unmanned ariel vehicle) that interact with the real world. This paper proposes a brain-inspired rasterization algorithm for obstacle detection. Rasterization algorithm is inspired by the information processing mechanism of the biological brain (including arthropod brain and human brain). Obstacle detection relies on feed forward and feed backward information processing mechanism. Receptive fields in every level of abstraction transmit different sizes of image regions to higher levels. Feedback is related to modulating attention about the position and size of target receptive field. Inspired by the circuit in human vision system, this paper provides a computational model for obstacle detection. Good performance on the experiments supports the proposed theoretical model. The major contribution of the proposed brain-inspired rasterization algorithm is that it can detect obstacle in any size from any direction without any preprocessing.

Keywords

  • Obstacle detection
  • Biological visual pathway
  • Rasterization algorithm
  • Brain-inspired intelligence

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-47103-7_35
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-47103-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)

    CrossRef  Google Scholar 

  2. Mayer, G.: Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthropod Struct. Dev. 35(4), 231–245 (2006)

    CrossRef  Google Scholar 

  3. Menezes, P., Dias, J., Araújo, H., de Almeida, A.: Low cost sensor based obstacle detection and description. In: Khatib, O., Kenneth Salisbury, J. (eds.) Experimental Robotics IV. Lecture Notes in Control and Information Sciences, vol. 223, pp. 231–237. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  4. Mejias, L., McNamara, S., Lai, J., Ford, J.: Vision-based detection and tracking of aerial targets for UAV collision avoidance. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 87–92 (2010)

    Google Scholar 

  5. Heidarsson, H.K., Sukhatme, G.S.: Obstacle detection and avoidance for an autonomous surface vehicle using a profiling sonar. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation, pp. 731–736 (2011)

    Google Scholar 

  6. Wedel, A., Franke, U., Klappstein, J., Brox, T., Cremers, D.: Realtime depth estimation and obstacle detection from monocular video. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 475–484. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. In: Proceedings of the 2002 IEEE Intelligent Vehicles Symposium, vol. 2, pp. 646–651 (2002)

    Google Scholar 

  8. Badal, S., Ravela, S., Draper, B., Hanson, A.: A practical obstacle detection and avoidance system. In: Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, pp. 97–104 (1994)

    Google Scholar 

  9. Omkar, S.N., Tripathi, S., Kumar, G., Gupta, I.: Vision based obstacle detection mechanism of a fixed wing UAV. Int. J. Adv. Comput. Res. 4(1), 2249–7277 (2014)

    Google Scholar 

  10. Low, T., Wyeth, G.: Obstacle detection using optical flow. In: Proceedings of the 2005 Australasian Conference on Robotics & Automation, pp. 1–10 (2005)

    Google Scholar 

  11. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Moving obstacle detection in highly dynamic scenes. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation, pp. 56–63 (2009)

    Google Scholar 

  12. Sagar, J., Visser, A.: Obstacle avoidance by combining background subtraction, optical flow and proximity estimation. In: Proceedings of the 2014 International Micro Air Vehicle Conference and Competition, pp. 142–149 (2014)

    Google Scholar 

  13. Qian, S., Tan, J.K., Kim, H.: Videotaped obstacle extraction from a moving camera. Int. J. Innov. Comput. Inf. Control 10, 717–728 (2014)

    Google Scholar 

  14. Rind, F.C., Simmons, J.P.: Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. Neurophysiology 68(5), 1654–1666 (1992)

    Google Scholar 

  15. Yue, S., Rind, F.C.: Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement. IEEE Trans. Neural Netw. 17(3), 705–716 (2006)

    CrossRef  Google Scholar 

  16. Brewer, A.A., Barton, B.: Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields. Front. Psychol. 5, 74 (2014)

    CrossRef  Google Scholar 

  17. Carlson, N.R.: Physiology of Behavior. Allyn & Bacon, Boston (1986)

    Google Scholar 

  18. Wandell, B.A., Dumoulin, S.O., Brewer, A.A.: Visual field maps in human cortex. Neuron 56(2), 366–383 (2007)

    CrossRef  Google Scholar 

  19. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    CrossRef  Google Scholar 

  20. McAlonan, K., Cavanaugh, J., Wurtz, R.H.: Guarding the gateway to cortex with attention in visual thalamus. Nature 456(7220), 391–394 (2008)

    CrossRef  Google Scholar 

  21. Gilbert, C.D., Li, W.: Top-down influences on visual processing. Nat. Rev. Neurosci. 14(5), 350–363 (2013)

    CrossRef  Google Scholar 

  22. Ungerleider, L.G., Haxby, J.V.: ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 4(2), 157–165 (1994)

    CrossRef  Google Scholar 

  23. Ichikawa, M., Masakura, Y., Munechika, K.: Dependence of illusory motion on directional consistency in oblique components. Perception 35(7), 933–946 (2006)

    CrossRef  Google Scholar 

  24. Wurtz, R.H., Kandel, E.R.: Central visual pathways. In: Principles of Neural Science, 4 edn, pp. 523–545. McGraw-Hill (2000)

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02060007), and Beijing Municipal Commission of Science and Technology (Z151100000915070, Z161100000216124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zeng, Y., Zhao, F., Wang, G., Zhang, L., Xu, B. (2016). Brain-Inspired Obstacle Detection Based on the Biological Visual Pathway. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)