Advertisement

Case Representation and Similarity Assessment in the selfBACK Decision Support System

  • Kerstin Bach
  • Tomasz Szczepanski
  • Agnar Aamodt
  • Odd Erik Gundersen
  • Paul Jarle Mork
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9969)

Abstract

In this paper we will introduce the selfBACK decision support system that facilitates, improves and reinforces self-management of non-specific low back pain. The selfBACK system is a predictive case-based reasoning system for personalizing recommendations in order to provide relief for patients with non-specific low back pain and increase their physical functionality over time. We present how case-based reasoning is used for capturing experiences from temporal patient data, and evaluate how to carry out a similarity-based retrieval in order to find the best advice for patients. Specifically, we will show how heterogeneous data received at various frequencies can be captured in cases and used for personalized advice.

Keywords

Case-based reasoning Case representations Data streams Similarity assessment 

Notes

Acknowledgement

The work has been conducted as part of the selfBACK project, which has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 689043.

References

  1. 1.
    Bichindaritz, I., Kansu, E., Sullivan, K.M.: Case-based reasoning in CARE-PARTNER: gathering evidence for evidence-based medical practice. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 334–345. Springer, Heidelberg (1998). doi: 10.1007/BFb0056345 CrossRefGoogle Scholar
  2. 2.
    Chang, P., Liu, C., Lin, J., Fan, C., Ng, C.S.P.: A neural network with a case based dynamic window for stock trading prediction. Expert Syst. Appl. 36(3), 6889–6898 (2009)CrossRefGoogle Scholar
  3. 3.
    Crow, W.T., Willis, D.R.: Estimating cost of care for patients with acute low back pain: a retrospective review of patient records. J. Am. Osteopath. Assoc. 109(4), 229–233 (2009)Google Scholar
  4. 4.
    Fritsche, L., Schlaefer, A., Budde, K., Schroeter, K., Neumayer, H.: Recognition of critical situations from time series of laboratory results by case-based reasoning. J. Am. Med. Inform. Assoc. 9(5), 520–528 (2002)CrossRefGoogle Scholar
  5. 5.
    Gentner, D., Forbus, K.D.: Mac/fac: a model of similarity-based retrieval. Cogn. Sci. 19, 141–205 (1991)Google Scholar
  6. 6.
    Gundersen, O.E.: Toward measuring the similarity of complex event sequences in real-time. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 107–121. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32986-9_10 CrossRefGoogle Scholar
  7. 7.
    Gundersen, O.E., Sørmo, F., Aamodt, A., Skalle, P.: A real-time decision support system for high cost oil-well drilling operations. AI Mag. 34(1), 21–32 (2013)Google Scholar
  8. 8.
    Hansen, B.K.: A fuzzy logic-based analog forecasting system for ceiling and visibility. Weather Forecast. 22, 1319–1330 (2007)CrossRefGoogle Scholar
  9. 9.
    Hill, J.C., Whitehurst, D.G.T., Lewis, M., Bryan, S., Dunn, K.M., Foster, N.E., Konstantinou, K., Main, C.J., Mason, E., Somerville, S., Sowden, G., Vohora, K., Hay, E.M.: Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial. Lancet 378(9802), 1560–1571 (2011)CrossRefGoogle Scholar
  10. 10.
    Jære, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-based prediction. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 174–188. Springer, Heidelberg (2002). doi: 10.1007/3-540-46119-1_14 CrossRefGoogle Scholar
  11. 11.
    Juarez, J.M., Campos, M., Palma, J., Marin, R.: T-care: temporal case retrieval system. Expert Syst. 28(4), 324–338 (2011)CrossRefGoogle Scholar
  12. 12.
    Marling, C., Shubrook, J., Schwartz, F.: Toward case-based reasoning for diabetes management: a prelimenary clinical study and decision support system prototype. Comput. Intell. 25(3), 165–179 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Montani, S., Leonardi, G., Bottrighi, A., Portinale, L., Terenziani, P.: Flexible and efficient retrieval of haemodialysis time series. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., Teije, A. (eds.) KR4HC/ProHealth-2012. LNCS (LNAI), vol. 7738, pp. 154–167. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36438-9_11 CrossRefGoogle Scholar
  14. 14.
    Montani, S.: Case-based decision support in time dependent medical domains. In: Bramer, M. (ed.) IFIP AI 2010. IAICT, vol. 331, pp. 238–242. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15286-3_24 CrossRefGoogle Scholar
  15. 15.
    Montani, S., Portinale, L.: Case based representation and retrieval with time dependent features. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 353–367. Springer, Heidelberg (2005). doi: 10.1007/11536406_28 CrossRefGoogle Scholar
  16. 16.
    Nilsson, M., Funk, P., Olsson, E.M.G., von Schéele, B., Xiong, N.: Clinical decision-support for diagnosing stress-related disorders by applying psychophysiological medical knowledge to an instance-based learning system. Artif. Intell. Med. 36(2), 159–176 (2006)CrossRefGoogle Scholar
  17. 17.
    Olsson, E., Funk, P., Xiong, N.: Fault diagnosis in industry using sensor readings and case-based reasoning. J. Intell. Fuzzy Syst. 15(1), 41–46 (2004)Google Scholar
  18. 18.
    Ram, A.: Continuous case-based reasoning. Artif. Intell. 90(1–2), 25–77 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Schmidt, R., Gierl, L.: A prognostic model for temporal courses that combines temporal abstraction and case-based reasoning. Int. J. Med. Inform. 74(2), 307–315 (2005)CrossRefGoogle Scholar
  20. 20.
    Serr, J., Arcos, J.L.: An empirical evaluation of similarity measures for time series classification. Knowl. Based Syst. 67, 305–314 (2014)CrossRefGoogle Scholar
  21. 21.
    van Tulder, M., Becker, A., Bekkering, T., Breen, A., del Real, M.T.G., Hutchinson, A., Koes, B., Laerum, E., Malmivaara, A.: Chapter 3 european guidelines for the management ofacute nonspecific low back painin primary care. Eur. Spine J. 15(2), s169–s191 (2006)CrossRefGoogle Scholar
  22. 22.
    de la Vega, R., Miró, J.: mhealth: a strategic field without a solid scientific soul. A systematic review of pain-related apps. PLoS One 9(7), e:101312 (2014)CrossRefGoogle Scholar
  23. 23.
    Wändell, P., Carlsson, A.C., Wettermark, B., Lord, G., Cars, T., Ljunggren, G.: Most common diseases diagnosed in primary care in stockholm, sweden, in 2011. Fam. Pract. 30(5), 506–513 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kerstin Bach
    • 1
  • Tomasz Szczepanski
    • 1
  • Agnar Aamodt
    • 1
  • Odd Erik Gundersen
    • 1
  • Paul Jarle Mork
    • 2
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Public Health and General PracticeNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations