Skip to main content

Approach to Engineering the Temperature Sensing E-textile: A Lightweight Thermistor as an Active Sensing Element

  • Conference paper
  • First Online:
Book cover Internet of Things. IoT Infrastructures (IoT360 2015)

Abstract

In this paper, we describe an approach to fabricating conductive textiles with temperature sensing capability. The key point of our approach is in combining electronic properties of a molecular organic semiconductor with clothing. A polycarbonate film covered with organic molecular semiconductor was used as the temperature measurement element. To minimize the electrical response of the developed bi layer thermistor to deformations, the thermistor was attached to a rigid film-like platform specifically fabricated in the textile by its local melting. Our study shows that the developed platform enables engineering of the conductive fabric the electrical resistance of which exclusively responded to temperature changes. Such e-textiles may be easily prepared using a simple fabrication procedure and, therefore, they are compatible with conductive sensing fabrics prepared by printing techniques. The developed organic thermistor, being cheap, lightweight and biocompatible, is highly attractive for applications in wearable biomedical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunelli, D., Minakov, I., Passerone, R., Rossi, M.: Smart monitoring for sustainable and energy-efficient buildings: a case study. In: IEEE Workshop on Environmental, Energy and Structural Monitoring Systems (EESMS), pp. 186–191. IEEE Press (2015)

    Google Scholar 

  2. Wannenburg, J., Malekian, R.: Body sensor network for mobile health monitoring, a diagnosis and anticipating system. J. IEEE Sens. (2015). doi:10.1109/JSEN.2015.2464773

    Google Scholar 

  3. Somov, A., Baranov, A., Spirjakin, D.: A wireless sensor-actuator system for hazardous gases detection and control. J. Sens. Actuators A: Phys. 210, 157–164 (2014)

    Article  Google Scholar 

  4. Kalinauckas, A.: Wearable technology. Mag. Eng. Technol. 10, 36–43 (2015)

    Article  Google Scholar 

  5. Axisa, F., Schmitt, P.M., Gehin, C., Delhomme, G., McAdams, E., Dittmar, A.: Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans. Inf. Technol. Biomed. 9, 325–336 (2005)

    Article  Google Scholar 

  6. Lorussi, F., Rocchia, W., Scilingo, E.P., Tognetti, A., De Rossi, D.: Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sens. J. 4, 807–818 (2004)

    Article  Google Scholar 

  7. Lumelsky, V.J., Shur, M.S., Wagner, S.: Sensitive skin. IEEE Sens. J. 1, 41–51 (2001)

    Article  Google Scholar 

  8. Ajmera, N., Priya Dash S., Meena, Ch.R.: Smart Textile. http://www.fibre2fashion.com

  9. Stoppa, M., Chiolerio, A.: Sensors wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014)

    Article  Google Scholar 

  10. Locher, I., Kirstein, T., Troster, G.: Conductive Textiles. http://www.wearable.ethz.ch/research/groups/textiles/ConductiveTextiles/ambience05_locher.pdf

  11. United Nations, New York, Department of Economic and Social Affairs Population Division: World Population Ageing (2013). http://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2013.pdf

  12. Linz, T., Gourmelon, L., Langereis, G.: Contactless EMG sensors embroidered onto textile. In: Leonhardt, S., Falck, T., Mähönen, P. (eds.) BSN 2007, vol. 13, pp. 29–34. Springer, Heidelberg (2007)

    Google Scholar 

  13. Löfhede, J., Seoane, F.: Thordstein: soft textile electrodes for EEG monitoring. In: 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), pp. 1–4. IEEE Press, New York (2010)

    Google Scholar 

  14. Löfhede, J., Seoane, F., Thordstein, M.: Textile electrodes for EEG recording—a pilot study. Sensors 12, 16907–16919 (2012)

    Article  Google Scholar 

  15. Mittal, K.L.: Preface in Metallized Plastics 7: Fundamental and Applied Aspects, Ed. K.L. Mittal, VSP BV, vii (2001)

    Google Scholar 

  16. Waltman, R.J., Bargon, J.: Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 64(1), 76–95 (1986)

    Article  Google Scholar 

  17. Pimanpang, P.-I., Wang, S., Wang, G.-C., Lu, T.-M.: Self-assembled monolayer growth on chemically modified polymer surfaces. Appl. Surf. Sci. 253, 3532–3540 (2006)

    Article  Google Scholar 

  18. Joo, S., Baldwin D.F., Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology, 21, 055204 8 (12 p) (2010)

    Google Scholar 

  19. Cardoso, M.J.R., Lima, M., Lenz, D.M.: Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater. Res. 10(4), 425–429 (2007)

    Article  Google Scholar 

  20. Laukhina, E., Pfattner, R., Ferreras, L.R., Galli, S., Mas-Torrent, M., Masciocchi, N., Laukhin, V., Rovira, C., Veciana, J.: Ultrasensitive piezoresistive all-organic flexible thin films. Adv. Mater. 22, 977–981 (2010)

    Article  Google Scholar 

  21. Laukhina, E., Tkacheva, V., Khasanov, S., Zorina, L., Gomez-Segura, J., Perezdel Pino, A., Veciana, J., Laukhin, V., Rovira, C.: Linked crystallites in the conducting topmost layer of polymer bilayer films controlled by temperature: from micro- to nanocrystallites. ChemPhysChem 7, 920–923 (2006)

    Article  Google Scholar 

  22. Jerome, D.: Organic conductors: from charge density wave TTF − TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 104, 5565–5592 (2004)

    Article  Google Scholar 

  23. Shibaeva, R.P., Yagubskii, E.B.: Molecular conductors and Superconductors based on Trihalides of BEDT-TTF and some of its analogues. Chem. Rev. 104, 5347–5378 (2004)

    Article  Google Scholar 

  24. Saito G.: chap. 10. In: Organic Molecular Solids W. Jones (ed.), CRC, Boca Raton (1997)

    Google Scholar 

  25. Ferreras, L., Pfattner, R., Mas-Torrent, M., Laukhina, E., Lopez, L., Laukhin, V., Rovira, C., Veciana, J.: Highly piezoresistive textiles based on a soft conducting charge transfer salt. J. Mater. Chem. 21, 637–641 (2011)

    Article  Google Scholar 

  26. PT-100 Series Platinum RTDs. http://www.lakeshore.com/Documents/LSTC_Platinum_l.pdf

  27. Laukhina, E., Laukhin, V., Lebedev, V., Rovira, C., Veciana, J.: Conductive fabric responding to extremely small temperature changes. Procedia Eng. 87, 144–147 (2014). 28th European Conference on Solid-State Transducers

    Article  Google Scholar 

  28. Somov, A., Lebedev, V., Baranov, A., Laukhina, E., Laukhin, V., Passerone, R., Rovira, C., Veciana, J.: Wireless sensor node with ultrasensitive film sensors for emergency applications. Procedia Eng. 87, 520–523 (2014). 28th European Conference on Solid-State Transducers

    Article  Google Scholar 

  29. Kelaidonis, D., Somov, A., Foteinos, V., Poulios, G., Stavroulaki, V., Vlacheas, P., Demestichas, P., Baranov, A., Biswas, A.R., Giaffreda, R.: Virtualization and cognitive management of real world objects in the internet of things. In: IEEE International Conference on Green Computing and Communications (GreenCom), pp. 187–194. IEEE Press (2012)

    Google Scholar 

  30. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. J. Ad Hoc Netw. 10, 1497–1516 (2012)

    Article  Google Scholar 

  31. Baccour, N., Koubaa, A., Mottola, L., Zuniga, M., Youssef, H., Boano, C., Alves, M.: Radio link quality estimation in wireless sensor networks: a survey. ACM Trans. Sen. Netw. 8, 34 (2012)

    Article  Google Scholar 

  32. Somov, A., Baranov, A., Spirjakin, D., Passerone, R.: Circuit design and power consumption analysis of wireless gas sensor nodes: one-sensor versus two-sensor approach. IEEE Sens. J. 14, 2056–2063 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Instituto de Salud Carlos III, through “Acciones CIBER.” The Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), an initiative funded by theVINational R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos IIIwith assistance from the European Regional Development Fund. The authors also appreciate the financial support through the projects: BE-WELL (CTQ2013–40480-R) granted by DGI (Spain), and GenCat (2014-SGR-17) financed by DGR (Catalunya), the European Commission’s Seventh Framework Programme for Research under contracts FP7-OCEAN-2013-614155, the Ministry of Education and Science of Russian Federation Grant RFMEFI57714X0133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Laukhina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lebedev, V. et al. (2016). Approach to Engineering the Temperature Sensing E-textile: A Lightweight Thermistor as an Active Sensing Element. In: Mandler, B., et al. Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-47075-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47075-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47074-0

  • Online ISBN: 978-3-319-47075-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics