Abstract
We consider a new adversarial goal in multiparty protocols, where the adversary may corrupt some parties. The goal is to manipulate the view of some honest party in a way, that this honest party learns the private data of some other honest party. The adversary itself might not learn this data at all. This goal, and such attacks are significant because they create a liability to the first honest party to clean its systems from second honest party’s data; a task that may be highly non-trivial. Cleaning the systems is essential to prevent possible security leaks in future.
Protecting against this goal essentially means achieving security against several non-cooperating adversaries, where only one adversary is active, representing the real attacker, and each other adversary is passive, corrupting only a single party. We formalize the adversarial goal by proposing an alternative notion of universal composability. We show how existing, conventionally secure multiparty protocols can be transformed to make them secure against the novel adversarial goal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schneier, B.: Data is a toxic asset, March 2016. https://www.schneier.com/blog/archives/2016/03/data_is_a_toxic.html
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)
Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 124–143. Springer, Heidelberg (2012)
Canetti, R., Vald, M.: Universally composable security with local adversaries. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 281–301. Springer, Heidelberg (2012)
Galil, Z., Haber, S., Yung, M.: Cryptographic computation: secure fault tolerant protocols and the public-key model. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)
Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)
Mohassel, P., Rosulek, M., Zhang, Y.: Fast, secure three-party computation: the garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS 2015), pp. 591–602, New York, NY, USA. ACM (2015)
Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B., (ed.) Innovations in Computer Science - ICS, 7–9 January 2011, Tsinghua University, Beijing, China, pp. 1–21. Tsinghua University Press (2010)
Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer, Heidelberg (2008)
Alwen, J., Katz, J., Lindell, Y., Persiano, G., shelat, a, Visconti, I.: Collusion-free multiparty computation in the mediated model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 524–540. Springer, Heidelberg (2009)
Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: Gabow, H.N., Fagin, R., (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 543–552. ACM (2005)
Halevi, S., Karger, P.A., Naor, D.: Enforcing confinement in distributed storage and a cryptographic model for access control. IACR Cryptology ePrint Archive 2005, p. 169 (2005)
Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)
Laud, P., Pankova, A.: Securing multiparty protocols against the exposure of data to honest parties. Cryptology ePrint Archive, Report 2016/650 (2016). http://eprint.iacr.org/2016/650
Damgård, I., Geisler, M., Nielsen, J.B.: From passive to covert security at low cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128–145. Springer, Heidelberg (2010)
Laud, P., Pankova, A.: Preprocessing-based verification of multiparty protocols with honest majority. Cryptology ePrint Archive, Report 2015/674 (2015). http://eprint.iacr.org/
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: Reif, J.H., (ed.) Proceedings on 34th Annual ACM Symposium on Theory of Computing, 19–21 May 2002, Montréal, Québec, Canada, pp. 494–503. ACM (2002)
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. IACR Cryptology ePrint Archive 2002, p. 140 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Laud, P., Pankova, A. (2016). Securing Multiparty Protocols Against the Exposure of Data to Honest Parties. In: Livraga, G., Torra, V., Aldini, A., Martinelli, F., Suri, N. (eds) Data Privacy Management and Security Assurance. DPM QASA 2016 2016. Lecture Notes in Computer Science(), vol 9963. Springer, Cham. https://doi.org/10.1007/978-3-319-47072-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-47072-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47071-9
Online ISBN: 978-3-319-47072-6
eBook Packages: Computer ScienceComputer Science (R0)