Estimation of Nucleation Barriers from Simulations of Crystal Nuclei Surrounded by Fluid in Equilibrium

  • Antonia Statt
  • Peter Koß
  • Peter VirnauEmail author
  • Kurt Binder
Conference paper


Nucleation rates for homogeneous nucleation are commonly estimated in terms of an Arrhenius law involving the nucleation barrier, written in terms of a competition of the contribution in surface free energy of the nucleus and the free energy gain proportional to the nucleus volume. For crystal nuclei this “classical nucleation theory” is hampered by the problem that the nucleus in general is non spherical, since the interfacial excess free energy depends on the orientation of the interface relative to the crystal axes. This problem can be avoided by analyzing the equilibrium of a crystal nucleus surrounded by fluid in a small simulation box in thermal equilibrium. Estimating the fluid pressure and the chemical potential, as well as the volume of the nucleus, suffices to obtain the nucleation barrier, if the equation of state of the pure phases as well as the coexistence pressure are known. This method is demonstrated to work using a coarse-grained model for colloids with an effective attraction due to small polymers, comparing two choices of the attraction strength.


Colloids Nucleation Crystallization Asakura-Oosawa model 



We would like to thank the DFG for funding in the framework of the priority program on heterogeneous nucleation (SPP 1296, grant N VI 237/4-3). P. K. is a recipient of a DFG-fellowship/DFG-funded position through the Excellence Initiative by the Graduate School Materials Science in Mainz (GSC 266). We thank the HLRS Stuttgart for generous grants of computer time at the HORNET supercomputer. The authors gratefully acknowledge the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (


  1. 1.
    Binder, K., Stauffer, D.: Adv. Phys. 25, 343 (1976)CrossRefGoogle Scholar
  2. 2.
    Kashchiev, D.: Nucleation: Basic Theory with Applications. Butterworth-Heinemann, Oxford (2000)Google Scholar
  3. 3.
    Schmitz, F., Virnau, P.: J. Chem. Phys. 142, 354110 (2015)CrossRefGoogle Scholar
  4. 4.
    Statt, A.: Dissertation, Johannes Gutenberg Universität Mainz (2015). URN: urn:nbn:de:hebis:77-41750Google Scholar
  5. 5.
    Herring, C.: Phys. Rev. 82, 87 (1951)CrossRefGoogle Scholar
  6. 6.
    Statt, A., Virnau, P., Binder, K.: Phys. Rev. Lett. 114, 026101 (2015)CrossRefGoogle Scholar
  7. 7.
    Statt, A., Virnau, P., Binder, K.: Mol. Phys. 113, 2556–2570 (2015)CrossRefGoogle Scholar
  8. 8.
    Binder, K.: Physica A 319, 99 (2003)CrossRefGoogle Scholar
  9. 9.
    MacDowell, L.G., Shen, V.K., Errington, J.R.: J. Chem. Phys. 125, 034705 (2006)CrossRefGoogle Scholar
  10. 10.
    Schmitz, F., Virnau, P., Binder, K.: Phys. Rev. E 81, 70533 (2013)Google Scholar
  11. 11.
    Palberg, T.: J. Phys. Condens. Matter 26, 333101 (2014)CrossRefGoogle Scholar
  12. 12.
    Royall, C.P., Poon, W.C.K., Weeks, E.R.: Soft Matter 9, 17 (2013)CrossRefGoogle Scholar
  13. 13.
    Poon, W.C.K.: J. Phys. Condens. Matter 14, R859 (2002)CrossRefGoogle Scholar
  14. 14.
    Asakura, S., Oosawa, F.: J. Chem. Phys. 22, 1255 (1954)CrossRefGoogle Scholar
  15. 15.
    Binder, K., Virnau, P., Statt, A.: J. Chem. Phys. 141, 140901 (2014)CrossRefGoogle Scholar
  16. 16.
    Zykova-Timan, T., Horbach, J., Binder, K.: J. Chem. Phys. 133, 014705 (2010)CrossRefGoogle Scholar
  17. 17.
    Statt, A., Schmitz, A., Virnau, P., Binder, K.: Monte Carlo simulation of crystal-liquid phase coexistence. In: Nagel, W.E., et al. (eds.) High Performance Computing in Science and Engineering’15: Part I: Physics. Springer, Berlin (2016)Google Scholar
  18. 18.
    Widom, B.: J. Chem. Phys. 39, 2808 (1963)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Antonia Statt
    • 1
  • Peter Koß
    • 1
  • Peter Virnau
    • 2
    Email author
  • Kurt Binder
    • 2
  1. 1.Graduate School Materials Science in MainzMainzGermany
  2. 2.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations