Iterated VND Versus Hyper-heuristics: Effective and General Approaches to Course Timetabling

  • Jorge A. Soria-AlcarazEmail author
  • Gabriela Ochoa
  • Marco A. Sotelo-Figueroa
  • Martín Carpio
  • Hector Puga
Part of the Studies in Computational Intelligence book series (SCI, volume 667)


The course timetabling problem is one of the most difficult combinatorial problems, it requires the assignment of a fixed number of subjects into a number of time slots minimizing the number of student conflicts. This article presents a comparison between state-of-the-art hyper-heuristics and a newly proposed iterated variable neighborhood descent algorithm when solving the course timetabling problem. Our formulation can be seen as an adaptive iterated local search algorithm that combines several move operators in the improvement stage. Our improvement stage not only uses several neighborhoods, but it also incorporates state-of-the-art reinforcement learning mechanisms to adaptively select them on the fly. Our approach substitutes the adaptive improvement stage by a variable neighborhood descent (VND) algorithm. VND is an ingredient of the more general variable neighborhood search (VNS), a powerful metaheuristic that systematically exploits the idea of neighborhood change. This leads to a more effective search process according course timetabling benchmark results.


Course timetabling Iterated local search Variable neighborhood descend Hyper-heuristics 


  1. 1.
  2. 2.
    Boizumault, P., Delon, Y., Peridy, L.: Logic programming for examination timetabling. Logic Program 26, 217–233 (1996)Google Scholar
  3. 3.
    Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighborhood approaches to university exam timetabling. European Journal of Operational Research 206(1), 46 – 53 (2010)Google Scholar
  4. 4.
    Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper- heuristics: a survey of the state of the art. Journal of the Operational Research Society (JORS) 64(12), 1695–1724 (2013)Google Scholar
  5. 5.
    Cambazard, H., Hebrard, E., OSullivan, B., Papadopoulos, A.: Local search and constraint programming for the post enrolment-based course timetabling problem. Annals of Operations Research 194, 111–135 (2012)Google Scholar
  6. 6.
    Carter, M.: A survey of practical applications of examination timetabling algorithms. Operations Research 34, 193–202 (1986)Google Scholar
  7. 7.
    Causmaecker, P.D., Demeester, P., Berghe, G.V.: A decomposed metaheuristic approachfor a real-world university timetabling problem. European Journal of Operational Research 195(1), 307 – 318 (2009)Google Scholar
  8. 8.
    Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for high-school timetabling. Computational Optimization and Applications 9, 277–298 (1997)Google Scholar
  9. 9.
    Conant-Pablos, S.E., Magaa-Lozano, D.J., Terashima-Marin, H.: Pipelining memetic algorithms, constraint satisfaction, and local search for course timetabling. MICAI Mexican international conference on artificial intelligence 1, 408–419 (2009)Google Scholar
  10. 10.
    Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems. Ph.D. thesis, The University of Sydney (1995)Google Scholar
  11. 11.
    Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 211–238. Springer US (2005)
Google Scholar
  12. 12.
    Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation 195(1), 299 – 308 (2008)Google Scholar
  13. 13.
    Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G., Hillier, F.S. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 57, pp. 320–353. Springer New York (2003) 
Google Scholar
  14. 14.
    Lajos, G.: Complete university modular timetabling using constraint logic programming. In E Burke and P Ross editors. Practice and Theory of Automated Timetabling (PATAT) I 1153, 146–161 (1996)Google Scholar
  15. 15.
    Lewis, R.: Metaheuristics for university course timetabling. Ph.D. thesis, University of Nottingham. (August 2006)Google Scholar
  16. 16.
    L, Z., Hao, J.K.: Adaptive tabu search for course timetabling. European Journal of Operational Research 200(1), 235 – 244 (2010)Google Scholar
  17. 17.
    Mayer, A., Nothegger, C., Chwatal, A., Raidl, G.: Solving the post enrolment course timetabling problem by ant colony optimization. International Timetabling Competition 2007 (2008)Google Scholar
  18. 18.
    Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid heuristics for exam timetabling and graph coloring problems. European Journal of Operational Research 198(2), 392 – 404 (2009)Google Scholar
  19. 19.
    Rudova, H., Muller, T., Murray, K.: Complex university course timetabling. Journal of Scheduling 14, 187–207 (2011).Google Scholar
  20. 20.
    Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A honey-bee mating optimization algorithm for educational timetabling problems. European Journal of Operational Research 216(3), 533 – 543 (2012)Google Scholar
  21. 21.
    Schaerf, A. & Gaspero, L.Burke, E. K. & Rudová, H. (Eds.)Practice and Theory of Automated Timetabling VI: 6th International Conference, PATAT 2006 Brno, Czech Republic, August 30–September 1, 2006 Revised Selected Papers Measurability and Reproducibility in University Timetabling Research: Discussion and Proposals Springer Berlin Heidelberg, 2007, 40-49Google Scholar
  22. 22.
    Soria-Alcaraz, J.A., Terashima-Marin, H., Carpio, M.: Academic timetabling design using hyper-heuristics. Advances in Soft Computing, ITT Springer-Verlag 1, 158–164 (2010)Google Scholar
  23. 23.
    Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K.: Effective learning hyper-heuristics for the course timetabling problem. European Journal of Operational Research 238(1), 77 – 86 (2014).Google Scholar
  24. 24.
    Soria-Alcaraz Jorge, A., Carpio, M., Puga, H., Sotelo-Figueroa, M.: Methodology of design: A novel generic approach applied to the course timetabling problem. In: P. Melin, O. Castillo (eds.) Soft Computing Applications in Optimization, Control, and Recognition, Studies in Fuzziness and Soft Computing, vol. 294, pp. 287–319. Springer Berlin Heidelberg (2013)Google Scholar
  25. 25.
    de Werra, D.: An introduction to timetabling. European Journal of Operational Research19(2), 151 – 162 (1985)Google Scholar
  26. 26.
    Willemen, R.J.: School timetable construction: Algorithms and complexity. Ph.D. thesis, Institute for Programming research and Algorithms (2002)Google Scholar
  27. 27.
    Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. In: Parallel Problem Solving from Nature - PPSN 2012, Lecture Notes in Computer Science, vol. 7492, pp. 418–427. Springer, Berlin (2012).Google Scholar
  28. 28.
    Yu, E., Sung, K.S.: A genetic algorithm for a university weekly courses timetabling problem. Transactions in Operational Research 9, 703–717 (2002).Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jorge A. Soria-Alcaraz
    • 1
    Email author
  • Gabriela Ochoa
    • 2
  • Marco A. Sotelo-Figueroa
    • 1
  • Martín Carpio
    • 3
  • Hector Puga
    • 3
  1. 1.Division de Ciencias Economico-Administrativas, Departamento de Estudios OrganizacionalesUniversidad de GuanajuatoLeonMexico
  2. 2.Department of Computer Science and MathematicsUniversity of StirlingStrilingUK
  3. 3.División de Estudios de Posgrado e InvestigacionInstituto Tecnológico de León, León GuanajuatoLeónMéxico

Personalised recommendations