Spin Quantum Computing with Endohedral Fullerenes

  • Wolfgang HarneitEmail author
Part of the Nanostructure Science and Technology book series (NST)


This chapter reviews the present state of the art in using the endohedral fullerenes N@C60 and P@C60 as qubits in a spin quantum computer. After a brief introduction to spin quantum computing (Sect. 14.1), we first discuss (Sect. 14.2) the rich spin structure of these endohedral fullerenes and specific theoretical proposals for architectures and operation models leading to a scalable quantum computer. We then briefly discuss (Sect. 14.3) those aspects of materials science that are needed to realize the proposed architectures. The central part of this chapter (Sect. 14.4) is a review of quantum operations and entanglement realized with endohedral fullerenes. Finally, we review (Sect. 14.5) efforts to realize single spin detection of endohedral fullerenes and conclude (Sect. 14.6) with a brief outlook on outstanding problems to be solved for obtaining a scalable quantum register.


Electron Spin Nuclear Spin Quantum Operation Fullerene Cage Quantum Register 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488CrossRefGoogle Scholar
  2. 2.
    Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. Proc R Soc A Math Phys Eng Sci 400:97–117CrossRefGoogle Scholar
  3. 3.
    Ladd TD et al (2010) Quantum computers. Nature 464:45–53CrossRefGoogle Scholar
  4. 4.
    Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113CrossRefGoogle Scholar
  5. 5.
    Paech M, Stoesser R (2000) In: Auner N, Weis J (eds) Organosilicon Chemistry IV: From Molecules to Materials. Wiley-VCH Verlag GmbH, Germany, pp 521–525. doi: 10.1002/9783527619917.ch87
  6. 6.
    Jones MAG, Morton JJL, Taylor RA, Ardavan A, Briggs GAD (2006) PL, magneto-PL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys status solidi 243:3037–3041CrossRefGoogle Scholar
  7. 7.
    Brown RM et al (2010) Electron spin coherence in metallofullerenes: Y, Sc, and La@C82. Phys Rev B 82:33410Google Scholar
  8. 8.
    Schoenfeld RS, Harneit W, Paech M (2006) Pulsed and cw EPR studies on hydrogen atoms encaged in octasilsesquioxane molecules. Phys status solidi 243:3008–3012CrossRefGoogle Scholar
  9. 9.
    Mitrikas G, Efthimiadou EK, Kordas G (2014) Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling. Phys Chem Chem Phys 16:2378–2383CrossRefGoogle Scholar
  10. 10.
    Cory DG et al (2000) NMR based quantum information processing: achievements and prospects. Fortschritte der Phys 48:875–907CrossRefGoogle Scholar
  11. 11.
    Vandersypen LMK et al (2001) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883–887CrossRefGoogle Scholar
  12. 12.
    Lu D et al (2015) In: Takui T, Hanson G, Berliner L (eds) Electron Spin Resonance (ESR) Based Quantum Computing. Springer, New York at,
  13. 13.
    Jones JA (2000) NMR quantum computation: a critical evaluation. Fortschritte der Phys 48:909–924CrossRefGoogle Scholar
  14. 14.
    Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133–137CrossRefGoogle Scholar
  15. 15.
    Ladd TD et al (2002) All-silicon quantum computer. Phys Rev Lett 89:17901CrossRefGoogle Scholar
  16. 16.
    Laucht A et al (2015) Electrically controlling single-spin qubits in a continuous microwave field. Sci Adv 1:e1500022–e1500022CrossRefGoogle Scholar
  17. 17.
    Pla JJ et al (2012) A single-atom electron spin qubit in silicon. Nature 489:541–545CrossRefGoogle Scholar
  18. 18.
    Pla JJ et al (2013) High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496:334–338CrossRefGoogle Scholar
  19. 19.
    Gruber A et al (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014Google Scholar
  20. 20.
    Jelezko F et al (2004) Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett 93:130501CrossRefGoogle Scholar
  21. 21.
    Childress L, Hanson R (2013) Diamond NV centers for quantum computing and quantum networks. MRS Bull 38:134–138CrossRefGoogle Scholar
  22. 22.
    Orwa JO et al (2010) Fabrication of single optical centres in diamond—a review. J Lumin 130:1646–1654CrossRefGoogle Scholar
  23. 23.
    Grinolds MS et al (2014) Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat Nanotechnol 9:279–284CrossRefGoogle Scholar
  24. 24.
    Bhallamudi VP, Hammel PC (2015) Nitrogen–vacancy centres: nanoscale MRI. Nat Nanotechnol 10:104–106CrossRefGoogle Scholar
  25. 25.
    Harneit W (2002) Fullerene-based electron-spin quantum computer. Phys Rev A 65:32322CrossRefGoogle Scholar
  26. 26.
    Ardavan A et al (2003) Nanoscale solid-state quantum computing. Philos Trans R Soc A 361:1473–1485CrossRefGoogle Scholar
  27. 27.
    Meyer C, Harneit W, Weidinger A, Lips K (2002) Experimental steps towards the realisation of a fullerene quantum computer. Phys status solidi 233:462–466CrossRefGoogle Scholar
  28. 28.
    Vinit, Sujith SV, Ramachandran CN (2016) Spin-spin coupling in nitrogen atom encapsulated C60, C59 N, and their respective dimers. J Phys Chem A 120:6990–6997Google Scholar
  29. 29.
    Almeida Murphy T et al (1996) Observation of atom like nitrogen in nitrogen-implanted solid C60. Phys Rev Lett 77:1075–1078CrossRefGoogle Scholar
  30. 30.
    Greer JC (2000) The atomic nature of endohedrally encapsulated nitrogen N@C60 studied by density functional and Hartree-Fock methods. Chem Phys Lett 326:567–572CrossRefGoogle Scholar
  31. 31.
    Knapp C et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95:999–1004CrossRefGoogle Scholar
  32. 32.
    Larsson JA, Greer JC, Harneit W, Weidinger A (2002) Phosphorous trapped within buckminsterfullerene. J Chem Phys 116:7849CrossRefGoogle Scholar
  33. 33.
    Gün A, Gençten A (2011) Three-qubit quantum entanglement for SI (S = 3/2, I = 1/2) spin system. Int J Quantum Inf 9:1635–1642CrossRefGoogle Scholar
  34. 34.
    Gün A, Çakmak S, Gençten A (2013) Construction of four-qubit quantum entanglement for SI (S = 3/2, I = 3/2) spin system. Quantum Inf Process 12:205–215CrossRefGoogle Scholar
  35. 35.
    Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67:52318CrossRefGoogle Scholar
  36. 36.
    Teles J et al (2012) Quantum information processing by nuclear magnetic resonance on quadrupolar nuclei. Philos Trans R Soc A 370:4770–4793CrossRefGoogle Scholar
  37. 37.
    Gedik Z et al (2015) Computational speed-up with a single qudit. Sci Rep 5:14671CrossRefGoogle Scholar
  38. 38.
    Harneit W, Huebener K, Naydenov B, Schaefer S, Scheloske M (2007) N@C60 quantum bit engineering. Phys status solidi 244:3879–3884CrossRefGoogle Scholar
  39. 39.
    Suter D, Lim K (2002) Scalable architecture for spin-based quantum computers with a single type of gate. Phys Rev A 65:52309CrossRefGoogle Scholar
  40. 40.
    Ju C, Suter D, Du J (2007) Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Phys Rev A 75:12318CrossRefGoogle Scholar
  41. 41.
    Ju C, Suter D, Du J (2011) An endohedral fullerene-based nuclear spin quantum computer. Phys Lett A 375:1441–1444CrossRefGoogle Scholar
  42. 42.
    Waiblinger M et al (2000) Magnetic interaction in diluted N@C60. AIP Conference Proceedings 544:195–198(AIP)Google Scholar
  43. 43.
    Heiney PA et al (1991) Orientational ordering transition in solid C60. Phys Rev Lett 66:2911–2914CrossRefGoogle Scholar
  44. 44.
    Harneit W, Meyer C, Weidinger A, Suter D, Twamley J (2002) Architectures for a spin quantum computer based on endohedral fullerenes. Phys status solidi 233:453–461CrossRefGoogle Scholar
  45. 45.
    Yang WL, Xu ZY, Wei H, Feng M, Suter D (2010) Quantum-information-processing architecture with endohedral fullerenes in a carbon nanotube. Phys Rev A 81:32303CrossRefGoogle Scholar
  46. 46.
    Kamenev DI, Berman GP, Tsifrinovich VI (2006) Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits. Phys Rev A 73:62336CrossRefGoogle Scholar
  47. 47.
    Feng M, Twamley J (2004) Selective pulse implementation of two-qubit gates for spin-3/2-based fullerene quantum-information processing. Phys Rev A 70:32318CrossRefGoogle Scholar
  48. 48.
    Morton JJL et al (2006) Bang–bang control of fullerene qubits using ultrafast phase gates. Nat Phys 2:40–43CrossRefGoogle Scholar
  49. 49.
    Hu YM, Yang WL, Feng M, Du JF (2009) Distributed quantum-information processing with fullerene-caged electron spins in distant nanotubes. Phys Rev A 80:22322CrossRefGoogle Scholar
  50. 50.
    Pietzak B, Weidinger A, Dinse K-P, Hirsch A (2002) In: Akasaka T, Nagase S (eds) Endofullerenes: a new family of carbon clusters. Springer, Netherlands, pp 13–65. doi: 10.1007/978-94-015-9938-2_2
  51. 51.
    Porfyrakis K (2016) In: Popov AA (ed) Endohedral fullerenes: electron transfer and spin. Springer, VerlagGoogle Scholar
  52. 52.
    Jakes P, Dinse K-P, Meyer C, Harneit W, Weidinger A (2003) Purification and optical spectroscopy of N@C60. Phys Chem Chem Phys 5:4080CrossRefGoogle Scholar
  53. 53.
    Zhang J et al (2006) The effects of a pyrrolidine functional group on the magnetic properties of N@C60. Chem Phys Lett 432:523–527CrossRefGoogle Scholar
  54. 54.
    Waiblinger M et al (2001) Corrected article: thermal stability of the endohedral fullerenes N@C60, N@C70, and P@C60. Phys Rev B 64:159901CrossRefGoogle Scholar
  55. 55.
    Tóth S et al (2008) Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes. Phys Rev B 77:214409CrossRefGoogle Scholar
  56. 56.
    Eckardt M, Wieczorek R, Harneit W (2015) Stability of C60 and N@C60 under thermal and optical exposure. Carbon N Y 95:601–607CrossRefGoogle Scholar
  57. 57.
    Zhou S, Rašović I, Briggs GAD, Porfyrakis K (2015) Synthesis of the first completely spin-compatible N@C60 cyclopropane derivatives by carefully tuning the DBU base catalyst. Chem Commun 51:7096–7099CrossRefGoogle Scholar
  58. 58.
    Pong W-T, Durkan C, Li H, Harneit W (2006) Strategies for the deposition of free radical organic molecules for scanning-probe microscopy experiments. J Scanning Probe Microsc 1:55–62CrossRefGoogle Scholar
  59. 59.
    Červenka J, Flipse CFJ (2010) Fullerene monolayer formation by spray coating. Nanotechnology 21:65302CrossRefGoogle Scholar
  60. 60.
    Simon F et al (2004) Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem Phys Lett 383:362–367CrossRefGoogle Scholar
  61. 61.
    Khlobystov AN et al (2004) Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids. J Mater Chem 14:2852CrossRefGoogle Scholar
  62. 62.
    Diaconescu B et al (2009) Molecular self-assembly of functionalized fullerenes on a metal surface. Phys Rev Lett 102:56102CrossRefGoogle Scholar
  63. 63.
    Deak DS, Silly F, Porfyrakis K, Castell MR (2006) Template ordered open-grid arrays of paired endohedral fullerenes. J Am Chem Soc 128:13976–13977CrossRefGoogle Scholar
  64. 64.
    Jakes P et al (2002) Electron paramagnetic resonance investigation of endohedral fullerenes N@C60 and N@C70 in a liquid crystal. J Magn Reson 156:303–308CrossRefGoogle Scholar
  65. 65.
    Meyer C et al (2002) Alignment of the endohedral fullerenes N@C60 and N@C70 in a liquid crystal matrix. Phys Rev A 65:61201CrossRefGoogle Scholar
  66. 66.
    Liu G et al (2013) Alignment of N@C60 derivatives in a liquid crystal matrix. J Phys Chem B 117:5925–5931CrossRefGoogle Scholar
  67. 67.
    Naydenov B et al (2006) Ordered inclusion of endohedral fullerenes N@C60 and P@C60 in a crystalline matrix. Chem Phys Lett 424:327–332CrossRefGoogle Scholar
  68. 68.
    Naydenov B, Mende J, Harneit W, Mehring M (2008) Entanglement in P@C60 encapsulated in a solid state matrix. Phys status solidi 245:2002–2005CrossRefGoogle Scholar
  69. 69.
    Rabl P et al (2010) A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat Phys 6:602–608CrossRefGoogle Scholar
  70. 70.
    Borneman TW, Granade CE, Cory DG (2012) Parallel information transfer in a multinode quantum information processor. Phys Rev Lett 108:140502CrossRefGoogle Scholar
  71. 71.
    Dinse K-P, Käß H, Knapp C, Weiden N (2000) EPR investigation of atoms in chemical traps. Carbon N Y 38:1635–1640CrossRefGoogle Scholar
  72. 72.
    Meyer C, Harneit W, Naydenov B, Lips K, Weidinger A (2004) N@C60 and P@C60 as quantum bits. Appl Magn Reson 27:123–132CrossRefGoogle Scholar
  73. 73.
    Wakahara T, Kato T, Miyazawa K, Harneit W (2012) N@C60 as a structural probe for fullerene nanomaterials. Carbon N Y 50:1709–1712CrossRefGoogle Scholar
  74. 74.
    Dietel E et al (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121:2432–2437CrossRefGoogle Scholar
  75. 75.
    Franco L et al (2006) Synthesis and magnetic properties of N@C60 derivatives. Chem Phys Lett 422:100–105CrossRefGoogle Scholar
  76. 76.
    Goedde B et al (2001) ‘Nitrogen doped’ C60 dimers (N@C60–C60). Chem Phys Lett 334:12–17Google Scholar
  77. 77.
    Plant SR et al (2013) A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem. Sci. 4:2971CrossRefGoogle Scholar
  78. 78.
    Farrington BJ et al (2012) Chemistry at the nanoscale: synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew Chemie 124:3647–3650CrossRefGoogle Scholar
  79. 79.
    Yang J et al (2012) Probing the zero-field splitting in the ordered N@C60 in buckycatcher C60H28 studied by EPR spectroscopy. Phys Lett A 376:1748–1751CrossRefGoogle Scholar
  80. 80.
    Gil-Ramírez G et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547CrossRefGoogle Scholar
  81. 81.
    Couderc G, Hulliger J (2010) Channel forming organic crystals: guest alignment and properties. Chem Soc Rev 39:1545CrossRefGoogle Scholar
  82. 82.
    Naydenov B et al (2006) N@C60 and N@C70 oriented in a single-crystalline matrix. Phys status solidi 243:2995–2998CrossRefGoogle Scholar
  83. 83.
    Morton JJL et al (2006) Electron spin relaxation of N@C60 in CS2. J Chem Phys 124:14508CrossRefGoogle Scholar
  84. 84.
    Brown RM et al (2011) Coherent state transfer between an electron and nuclear spin in 15N@C60. Phys Rev Lett 106:110504CrossRefGoogle Scholar
  85. 85.
    Morton JJL et al (2007) Environmental effects on electron spin relaxation in N@C60. Phys Rev B 76:85418CrossRefGoogle Scholar
  86. 86.
    Menéndez J, Page JB (2000) Light scattering in solids VIII. In: Cardona M, Güntherodt G (eds) Topics in applied physics, vol 76. Spinger, Berlin, Heidelberg, pp 27–95Google Scholar
  87. 87.
    Knorr SB (2002) ESR studies of the electronic properties of fullerenes and their compounds (in German). PhD thesis. Universitaet Stuttgart, GermanyGoogle Scholar
  88. 88.
    Morton JJL et al (2005) A new mechanism for electron spin echo envelope modulation. J Chem Phys 122:174504CrossRefGoogle Scholar
  89. 89.
    Meyer C (2003) Endohedral fullerenes for quantum computing. PhD thesis. Freie Universitaet Berlin, GermanyGoogle Scholar
  90. 90.
    Naydenov B (2006) Encapsulation of endohedral fullerenes for quantum computing. PhD thesis. Freie Universitaet, BerlinGoogle Scholar
  91. 91.
    Morley GW et al (2007) Efficient dynamic nuclear polarization at high magnetic fields. Phys Rev Lett 98:220501CrossRefGoogle Scholar
  92. 92.
    Morton JJL et al (2006) The N@C60 nuclear spin qubit: bang-bang decoupling and ultrafast phase gates. Phys status solidi 243:3028–3031CrossRefGoogle Scholar
  93. 93.
    Morton JJL et al (2005) Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance. Phys Rev A 71:12332CrossRefGoogle Scholar
  94. 94.
    Morton JJL et al (2005) High fidelity single qubit operations using pulsed electron paramagnetic resonance. Phys Rev Lett 95:200501CrossRefGoogle Scholar
  95. 95.
    Simmons S, Wu H, Morton JJL (2012) Controlling and exploiting phases in multi-spin systems using electron spin resonance and nuclear magnetic resonance. Philos Trans R Soc A Math Phys Eng Sci 370:4794–4809CrossRefGoogle Scholar
  96. 96.
    Zhang J, Souza AM, Brandao FD, Suter D (2014) Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys Rev Lett 112:50502CrossRefGoogle Scholar
  97. 97.
    Mehring M, Scherer W, Weidinger A (2004) Pseudoentanglement of spin states in the multilevel 15N@C60 System. Phys Rev Lett 93:206603CrossRefGoogle Scholar
  98. 98.
    Scherer W, Mehring M (2008) Entangled electron and nuclear spin states in 15N@C60: density matrix tomography. J Chem Phys 128:52305CrossRefGoogle Scholar
  99. 99.
    Auccaise R et al (2008) A study of the relaxation dynamics in a quadrupolar NMR system using quantum state tomography. J Magn Reson 192:17–26CrossRefGoogle Scholar
  100. 100.
    Blank A, Suhovoy E, Halevy R, Shtirberg L, Harneit W (2009) ESR imaging in solid phase down to sub-micron resolution: methodology and applications. Phys Chem Chem Phys 11:6689CrossRefGoogle Scholar
  101. 101.
    Blank A, Talmon Y, Shklyar M, Shtirberg L, Harneit W (2008) Direct measurement of diffusion in liquid phase by electron spin resonance. Chem Phys Lett 465:147–152CrossRefGoogle Scholar
  102. 102.
    Artzi Y, Twig Y, Blank A (2015) Induction-detection electron spin resonance with spin sensitivity of a few tens of spins. Appl Phys Lett 106:84104CrossRefGoogle Scholar
  103. 103.
    Bienfait A et al (2015) Reaching the quantum limit of sensitivity in electron spin resonance. Nat Nanotechnol 11:253–257CrossRefGoogle Scholar
  104. 104.
    Grose JE et al (2008) Tunnelling spectra of individual magnetic endofullerene molecules. Nat Mater 7:884–889CrossRefGoogle Scholar
  105. 105.
    Harneit W et al (2007) Room temperature electrical detection of spin coherence in C60. Phys Rev Lett 98:216601CrossRefGoogle Scholar
  106. 106.
    Eckardt M, Behrends J, Münter D, Harneit W (2015) Compact electrically detected magnetic resonance setup. AIP Adv 5:47139CrossRefGoogle Scholar
  107. 107.
    Roch N et al (2011) Cotunneling through a magnetic single-molecule transistor based on N@C60. Phys Rev B 83:81407CrossRefGoogle Scholar
  108. 108.
    Elzerman JM et al (2004) Single-shot read-out of an individual electron spin in a quantum dot. Nature 430:431–435CrossRefGoogle Scholar
  109. 109.
    Petta JR et al (2005) Coherent Manipulation of Coupled Electron spins in semiconductor quantum dots. Science 309:2180–2184Google Scholar
  110. 110.
    Feng M, Twamley J (2004) Readout scheme of the fullerene-based quantum computer by a single-electron transistor. Phys Rev A 70:30303CrossRefGoogle Scholar
  111. 111.
    McCamey DR, Van Tol J, Morley GW, Boehme C (2010) Electronic spin storage in an electrically readable nuclear spin memory with a lifetime >100 seconds. Science 330:1652–1656Google Scholar
  112. 112.
    McCamey DR et al (2006) Electrically detected magnetic resonance in ion-implanted Si: P nanostructures. Appl Phys Lett 89:182115CrossRefGoogle Scholar
  113. 113.
    Eckardt M (2016) Electrically detected magnetic resonance on fullerene-based organic semiconductor devices and microcrystals. PhD thesis. Johannes Gutenberg-Universitaet Mainz, GermanyGoogle Scholar
  114. 114.
    Filidou V et al (2012) Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat Phys 8:596–600CrossRefGoogle Scholar
  115. 115.
    Grotz B et al (2011) Sensing external spins with nitrogen-vacancy diamond. New J Phys 13:55004CrossRefGoogle Scholar
  116. 116.
    Gaebel T et al (2006) Room-temperature coherent coupling of single spins in diamond. Nat Phys 2:408–413CrossRefGoogle Scholar
  117. 117.
    Huebener K, Schoenfeld RS, Kniepert J, Oelmueller C, Harneit W (2008) ODMR of NV centers in nano-diamonds covered with N@C60. Phys status solidi 245:2013–2017CrossRefGoogle Scholar
  118. 118.
    Schoenfeld RS (2011) Optical readout of single spins for quantum computing and magnetic sensing. PhD thesis. Freie Universitaet, BerlinGoogle Scholar
  119. 119.
    Shi F et al (2010) Room-temperature implementation of the deutsch-jozsa algorithm with a single electronic spin in diamond. Phys Rev Lett 105:40504CrossRefGoogle Scholar
  120. 120.
    Schoenfeld RS, Harneit W (2011) Real time magnetic field sensing and imaging using a single spin in diamond. Phys Rev Lett 106:30802CrossRefGoogle Scholar
  121. 121.
    Romach Y et al (2015) Spectroscopy of surface-induced noise using shallow spins in diamond. Phys Rev Lett 114:17601CrossRefGoogle Scholar
  122. 122.
    Nimmrich M et al (2010) Atomic-resolution imaging of clean and hydrogen-terminated C(100) − (2 × 1) diamond surfaces using noncontact AFM. Phys Rev B 81:201403CrossRefGoogle Scholar
  123. 123.
    Dyachenko O et al (2015) A diamond (100) surface with perfect phase purity. Chem Phys Lett 640:72–76CrossRefGoogle Scholar
  124. 124.
    Morton JJL, Lovett BW (2011) Hybrid solid-state qubits: the powerful role of electron spins. Annu Rev Condens Matter Phys 2:189–212CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations