Change Detection in Multitemporal Hyperspectral Images

  • Lorenzo Bruzzone
  • Sicong Liu
  • Francesca Bovolo
  • Peijun Du
Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 20)

Abstract

Multitemporal hyperspectral images provide very detailed spectral information that directly relates to land surface composition. This results in the potential detection of more spectral changes than those visible in the traditional multispectral images. However, the process of extracting changes from hyperspectral images is very complex. This chapter addresses the multiple-change detection problem in multitemporal hyperspectral remote sensing images by analyzing the complexity of this task. An analysis of the concept of “change” is given from the perspective of pixel spectral behaviors, in order to formalize the considered problem. A hierarchical change-detection approach is presented, which aims to identify the possible changes occurred between a pair of hyperspectral images. Changes having discriminable spectral behaviors in hyperspectral images are identified hierarchically by following a top-down structure in an unsupervised way. Experimental results obtained on simulated and real bi-temporal images confirm the validity of the proposed hierarchical change detection approach.

References

  1. Adar S, Notesco G, Brook A, Livne EA (2011) Change detection over Sokolov open-pit mining area, Czech Republic, using multi-temporal HyMAP data (2009–2010). In: Proceedings of the SPIE 8180, image and signal processing for remote sensing XVII, 81800 TGoogle Scholar
  2. Beck R (2003) EO-1 User GuideGoogle Scholar
  3. Bovolo F, Bruzzone L (2007) A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans Geosci Remote Sens 45(1):218–236CrossRefGoogle Scholar
  4. Bovolo F, Marchesi S, Bruzzone L (2012) A framework for automatic and unsupervised detection of multiple changes in multitemporal images. IEEE Trans Geosci Remote Sens 50(6):2196–2212CrossRefGoogle Scholar
  5. Bruzzone L, Bovolo F (2013) A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc IEEE 101(3):609–630CrossRefGoogle Scholar
  6. Bruzzone L, Cossu R (2002) A multiple cascade-classifier system for a robust a partially unsupervised updating of land-cover maps. IEEE Trans Geosci Remote Sens 40(9):1984–1996CrossRefGoogle Scholar
  7. Bruzzone L, Prieto DF (2000a) A minimum-cost thresholding technique for unsupervised change detection. Int J Remote Sens 21(18):3539–3544CrossRefGoogle Scholar
  8. Bruzzone L, Prieto D (2000b) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38(3):1170–1182CrossRefGoogle Scholar
  9. Bruzzone L, Serpico S (1997) An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. Geosci Remote Sens IEEE Trans on 35(4):858–867CrossRefGoogle Scholar
  10. Canty MJ, Nielsen AA (2006a) Visualization and unsupervised classification of changes in multispectral satellite imagery. Int J Remote Sens 27(18):3961–3975CrossRefGoogle Scholar
  11. Canty MJ, Nielsen AA (2006b) Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Int J Remote Sens 27(18):3961–3975CrossRefGoogle Scholar
  12. Castellana L, D’Addabbo A, Pasquariello G (2007) A composed supervised/unsupervised approach to improve change detection from remote sensing. Pattern Recogn Lett 28(4):405–413CrossRefGoogle Scholar
  13. Celik T (2010) Change detection in satellite images using a genetic algorithm approach. IEEE Geosci Remote Sens Lett 7(2):386–390CrossRefGoogle Scholar
  14. Chakrabarti A, Zickler T (2011) Statistics of real-world hyperspectral images. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR)Google Scholar
  15. Coppin P, Bauer M (1996) Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens Rev 13:207–304CrossRefGoogle Scholar
  16. Dalponte M, Bruzzone L, Vescovo L, Gianelle D (2009) The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sens Environ 113:2345–2355CrossRefGoogle Scholar
  17. Demir B, Bovolo F, Bruzzone L (2012) Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification. IEEE Trans Geosci Remote Sens 50(5):1930–1941CrossRefGoogle Scholar
  18. Du Q (2012) A new method for change analysis of multi-temporal hyperspectral images. In: IEEE Proceedings of the 4th WHISPERS, ShanghaiGoogle Scholar
  19. Du YZ, Chang CI, Ren H, Chang C, Jensen J (2004) New hyperspectral discrimination measure for spectral characterization. Opt Eng 43(8):1777–1786CrossRefGoogle Scholar
  20. Du Q, Wasson L, King R (2005) Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery. In: IEEE International Workshop on MultiTemp, Biloxi, USAGoogle Scholar
  21. Du Q, Younan N, King R (2007) Change analysis for hyperspectral imagery. In: IEEE International Workshop on MultiTemp, BelgiumGoogle Scholar
  22. Du P, Liu S, Bruzzone L, Bovolo F (2012) Target-driven change detection based on data transformation and similarity measures. In: 2012 IEEE international geoscience and remote sensing symposium, Munich, GermanyGoogle Scholar
  23. Du P, Liu S, Gamba P, Tan K, Xia J (2012b) Fusion of difference images for change detection over urban areas. IEEE J Sel Top Appl Earth Obs Remote Sens 5(4):1076–1086CrossRefGoogle Scholar
  24. Du P, Liu S, Xia J, Zhao Y (2013) Information fusion techniques for change detection from multi-temporal remote sensing images. Inf Fusion 14(1):19–27CrossRefGoogle Scholar
  25. Du P, Liu S, Liu P, Tan K, Cheng L (2014) Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images. Geo-spatial Inf Sci 17(1):26–38CrossRefGoogle Scholar
  26. Eismann MT, Meola J, Stocker A, Beaven S, Schaum A (2008) Hyperspectral change detection in the presence of diurnal and seasonal variations. IEEE Trans Geosci Remote Sens 46(1):237–249CrossRefGoogle Scholar
  27. Frank M, Canty M (2003) Unsupervised change detection for hyperspectral images. In: Proceedings of the 12th JPL Airborne earth science workshop, NASA Technical Reports Sever (NTRS), Pasadena, USAGoogle Scholar
  28. Ghosh A, Mishra NS, Ghosh S (2011) Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf Sci 181(4):699–715CrossRefGoogle Scholar
  29. Hégarat-Mascle SL, Seltz R (2004) Automatic change detection by evidential fusion of change indices. Remote Sens Environ 91(3–4):390–404CrossRefGoogle Scholar
  30. Hu X, Xu L (2004) Investigation on several model selection criteria for determining the number of cluster. Neural Inform Process – Lett Rev 4(1):1–10Google Scholar
  31. Hughes GF (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory IT-14:55–63CrossRefGoogle Scholar
  32. Ishioka T (2005) An expansion of x-means for automatically determining the optimal number of clusters–progressive iterations of k-means and merging of the clusters. In: IASTED international conference on computational intelligence. ACTC Press, Calgary, CanadaGoogle Scholar
  33. Liu S, Bruzzone L, Bovolo F, Du P (2012) Unsupervised hierarchical spectral analysis for change detection in hyperspectral images. In: Proceedings of the 4th WHISPERS, ShanghaiGoogle Scholar
  34. Liu S, Bruzzone L, Bovolo F, Du P (2015) Hierarchical change detection in multitemporal hyperspectral images. IEEE Trans Geosci Remote Sens 53(1):244–260CrossRefGoogle Scholar
  35. Lu D, Mause P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2401CrossRefGoogle Scholar
  36. Marin C, Bovolo F, Bruzzone L (2014) Rapid and accurate damage detection in built-up areas combining stripmap and spotlight SAR images. In: IEEE international geoscience and remote sensing symposium, Québec City, Québec, CanadaGoogle Scholar
  37. Meola J, Eismann M, Barnard K, Hardie R (2007) Analysis of hyperspectral change detection as affected by vegetation and illumination variation. In: Proceedings of the SPIE, Orlando, USGoogle Scholar
  38. Meola J, Eismann M, Moses R, Ash J (2011) Detecting changes in hyperspectral imagery using a model-based approach. IEEE Trans Geosci Remote Sens 49(7):2647–2661CrossRefGoogle Scholar
  39. Nemmour H, Chibani Y (2006) Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J Photogramm 61(2):125–133CrossRefGoogle Scholar
  40. Nielsen A (2007) The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans Image Proc 16(2):463–478CrossRefGoogle Scholar
  41. Ortiz-Rivera V, Vélez-Reyes M, Roysam B (2006) Change detection in hyperspectral imagery using temporal principal components. In: Proceedings of the. SPIE, algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XIIGoogle Scholar
  42. Pelleg D, Moore AW (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: In Proceedings of the seventeenth international conference on machine learning (ICML ’00), San Francisco, CA, USAGoogle Scholar
  43. Plaza A, Martinez P, Perez R, Plaza J (2004) A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans Geosci Remote Sens 42(3):650–663CrossRefGoogle Scholar
  44. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307CrossRefGoogle Scholar
  45. Ridd MK, Liu JJ (1998) A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 63(2):95–100CrossRefGoogle Scholar
  46. Schaum A, Stocker A (1998) Long-interval chronochrome target detection. In: Proceedings of the International Symposium on Spectral Sensing Research, 1997, pp 1760–1770Google Scholar
  47. Schaum A, Stocker A (2004) Hyperspectral change detection and supervised matched filtering based on covariance equalization. Proc Spie Int Soc Opt Eng 5425:77–90Google Scholar
  48. Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003CrossRefGoogle Scholar
  49. Soares V, Hoffer RM (1994) Eucalyptus forest change classification using multi-data Landsat TM data. Proc SPIE 2314:281–291CrossRefGoogle Scholar
  50. Tu S, Xu L (2012) A theoretical investigation of several model selection criteria for dimensionality reduction. Pattern Recogn Lett 33(9):1117–1126CrossRefGoogle Scholar
  51. Vongsy K, Mendenhall M (2011) A comparative study of spectral detectors. In; Proceedings of the 3rd WHISPERS, Lisbon, PortugalGoogle Scholar
  52. Vongsy K, Mendenhall M, Eismann M, Peterson GL (2012) Removing parallax-induced changes in hyperspectral change detection. In IEEE international geoscience and remote sensing symposium, Munich, GermanyGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lorenzo Bruzzone
    • 1
  • Sicong Liu
    • 1
  • Francesca Bovolo
    • 2
  • Peijun Du
    • 3
  1. 1.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly
  2. 2.Center for Information and Communication TechnologyFondazione Bruon KesslerTrentoItaly
  3. 3.Department of Geographical Information ScienceNanjing UniversityNanjingChina

Personalised recommendations