Unsupervised Clustering of EOG as a Viable Substitute for Optical Eye Tracking

Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Eye-movements are typically measured with video cameras and image recognition algorithms. Unfortunately, these systems are susceptible to changes in illumination during measurements. Electrooculography (EOG) is another approach for measuring eye-movements that does not suffer from the same weakness. Here, we introduce and compare two methods that allow us to extract the dwells of our participants from EOG signals under presentation conditions that are too difficult for optical eye tracking. The first method is unsupervised and utilizes density-based clustering. The second method combines the optical eye-tracker’s methods to determine fixations and saccades with unsupervised clustering. Our results show that EOG can serve as a sufficiently precise and robust substitute for optical eye tracking, especially in studies with changing lighting conditions. Moreover, EOG can be recorded alongside electroencephalography (EEG) without additional effort.

References

  1. 1.
    Alt, F., Bulling, A., Gravanis, G., Buschek, D.: GravitySpot: guiding users in front of public displays using on-screen visual cues. In: Proceedings of the 28th ACM Symposium on User Interface Software and Technology, UIST 2015. ACM, New York (2015)Google Scholar
  2. 2.
    Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)MATHGoogle Scholar
  3. 3.
    Bulling, A., Roggen, D., Tröster, G.: It’s in your eyes: towards context-awareness and mobile HCI using wearable EOG goggles. In: Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp 2008. pp. 84–93. ACM, New York (2008). doi:10.1145/1409635.1409647Google Scholar
  4. 4.
    Bulling, A., Roggen, D., Tröster, G.: Wearable EOG goggles: seamless sensing and context-awareness in everyday environments. J. Ambient Int. Smart Environ. 1 (2), 157–171 (2009). doi:10.3233/AIS-2009-0020Google Scholar
  5. 5.
    Bulling, A., Ward, J.A., Gellersen, H., Tröster, G.: Robust recognition of reading activity in transit using wearable electrooculography. In: Indulska, J., Patterson, D.J., Rodden, T., Ott, M. (eds.) Proceedings of the 6th International Conference on Pervasive Computing, Pervasive 2008. pp. 19–37. Springer, Berlin/New York (2008). doi:10.1007/978-3-540-79576-6_2Google Scholar
  6. 6.
    Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data: Part 1. Density-based approach. Chemom. Intell. Lab. Syst. 56 (2), 83–92 (2001). doi:10.1016/S0169-7439(01)00111-3CrossRefGoogle Scholar
  7. 7.
    Degler, H.E., Smith, J.R., Black, F.O.: Automatic detection and resolution of synchronous rapid eye movements. Comput. Biomed. Res. 8 (4), 393–404 (1975). doi:10.1016/0010-4809(75)90015-4CrossRefGoogle Scholar
  8. 8.
    Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A.M., Kliegl, R.: Coregistration of eye movements and EEG in natural reading: analyses and review. J. Exp. Psychol.: Gen. 140 (4), 552 (2011)Google Scholar
  9. 9.
    Ding, J., Sperling, G., Srinivasan, R.: Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cereb. Cortex 16 (7), 1016–1029 (2006)CrossRefGoogle Scholar
  10. 10.
    Engbert, R., Kliegl, R.: Microsaccades uncover the orientation of covert attention. Vis. Res. 43 (9), 1035–1045 (2003). doi:10.1016/S0042-6989(03)00084-1CrossRefGoogle Scholar
  11. 11.
    Engbert, R., Mergenthaler, K.: Microsaccades are triggered by low retinal image slip. Proc. Natl. Acad. Sci. 103 (18), 7192–7197 (2006). doi:10.1073/pnas.0509557103CrossRefGoogle Scholar
  12. 12.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96(34), pp. 226–231 (1996)Google Scholar
  13. 13.
    Finocchio, D.V., Preston, K.L., Fuchs, A.F.: Obtaining a quantitative measure of eye movements in human infants: a method of calibrating the electrooculogram. Vis. Res. 30 (8), 1119–1128 (1990). doi:10.1016/0042-6989(90)90169-LCrossRefGoogle Scholar
  14. 14.
    Gopal, I.S., Haddad, G.G.: Automatic detection of eye movements in REM sleep using the electrooculogram. Am. J. Physiol. Regul. Integr. Comp. Physiol. 241 (3), R217–R221 (1981)Google Scholar
  15. 15.
    Gu, J., Meng, M., Cook, A., Faulkner, M.: A study of natural eye movement detection and ocular implant movement control using processed EOG signals. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 2, pp. 1555–1560 (2001). doi:10.1109/ROBOT.2001.932832Google Scholar
  16. 16.
    Henderson, J.M.: Human gaze control during real-world scene perception. Trends Cogn. Sci. 7 (11), 498–504 (2003). doi:10.1016/j.tics.2003.09.006CrossRefGoogle Scholar
  17. 17.
    Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye tracking: a comprehensive guide to methods and measures. OUP, Oxford (2011)Google Scholar
  18. 18.
    Hutzler, F., Braun, M., Võ, M.L.H., Engl, V., Hofmann, M., Dambacher, M., Leder, H., Jacobs, A.M.: Welcome to the real world: validating fixation-related brain potentials for ecologically valid settings. Brain Res. 1172, 124–129 (2007). doi:10.1016/j.brainres.2007.07.025CrossRefGoogle Scholar
  19. 19.
    Kelly, S., Lalor, E., Reilly, R., Foxe, J.: Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans. Neural Syst. Rehabil. Eng. 13 (2), 172–178 (2005). doi:10.1109/TNSRE.2005.847369CrossRefGoogle Scholar
  20. 20.
    Kliegl, R., Dambacher, M., Dimigen, O., Jacobs, A.M., Sommer, W.: Eye movements and brain electric potentials during reading. Psychol. Res. 76 (2), 145–158 (2011). doi:10.1007/s00426-011-0376-xCrossRefGoogle Scholar
  21. 21.
    Land, M., Mennie, N., Rusted, J.: The roles of vision and eye movements in the control of activities of daily living. Perception 28 (11), 1311–1328 (1999). doi:10.1068/p2935CrossRefGoogle Scholar
  22. 22.
    Mowrer, O., Ruch, T.C., Miller, N.: The corneo-retinal potential difference as the basis of the galvanometric method of recording eye movements. Am. J. Physiol.–Leg. Content 114 (2), 423–428 (1935)Google Scholar
  23. 23.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48 (3), 443–453 (1970). doi:10.1016/0022-2836(70)90057-4CrossRefGoogle Scholar
  24. 24.
    Pelz, J., Hayhoe, M., Loeber, R.: The coordination of eye, head, and hand movements in a natural task. Exp. Brain Res. 139 (3), 266–277 (2001). doi:10.1007/s002210100745CrossRefGoogle Scholar
  25. 25.
    Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, ETRA’00, pp. 71–78. ACM, New York (2000). doi:10.1145/355017.355028Google Scholar
  26. 26.
    Santella, A., DeCarlo, D.: Robust clustering of eye movement recordings for quantification of visual interest. In: Proceedings of the 2004 Symposium on Eye Tracking Research & Applications, ETRA’04, pp. 27–34. ACM, New York (2004). doi:10.1145/968363.968368Google Scholar
  27. 27.
    Stern, R.M., Ray, W.J., Quigley, K.S.: Psychophysiological recording. Oxford University Press, Oxford/New York (2001)Google Scholar
  28. 28.
    Thut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A.: α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26 (37), 9494–9502 (2006)Google Scholar
  29. 29.
    Vidal, M., Bulling, A., Gellersen, H.: Analysing EOG signal features for the discrimination of eye movements with wearable devices. In: Proceedings of the 1st International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction, PETMEI’11, pp. 15–20. ACM, New York (2011). doi:10.1145/2029956.2029962Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Max Planck Institute for Biological CyberneticsTuebingenGermany
  2. 2.IMPRS for Cognitive and Systems NeuroscienceTuebingenGermany
  3. 3.Max Planck Institute for Intelligent SystemsTuebingenGermany

Personalised recommendations