Accuracy of Monocular Gaze Tracking on 3D Geometry
- 3 Citations
- 1.4k Downloads
Abstract
Many applications such as data visualization or object recognition benefit from accurate knowledge of where a person is looking at. We present a system for accurately tracking gaze positions on a three dimensional object using a monocular head mounted eye tracker. We accomplish this by (1) using digital manufacturing to create stimuli whose geometry is know to high accuracy, (2) embedding fiducial markers into the manufactured objects to reliably estimate the rigid transformation of the object, and, (3) using a perspective model to relate pupil positions to 3D locations. This combination enables the efficient and accurate computation of gaze position on an object from measured pupil positions. We validate the of our system experimentally, achieving an angular resolution of 0.8∘ and a 1.5 % depth error using a simple calibration procedure with 11 points.
Keywords
Fiducial Marker Angular Error Rigid Transformation Chin Rest Depth ErrorNotes
Acknowledgements
This work has been partially supported by the ERC through grant ERC-2010-StG 259550 (XSHAPE). We thank Felix Haase for his valuable support in performing the experiments and Marianne Maertens for discussions on the experimental setup.
References
- 1.Abbott, W.W., Faisal, A.A.: Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces. J. Neural Eng. 9, 1–11 (2012)CrossRefGoogle Scholar
- 2.Agarwal, S., Mierle, K., others: Ceres solver. http://ceres-solver.org. Cited 21 Dec 2015
- 3.Barz, M., Bulling, A., Daiber, F.: Computational modelling and prediction of gaze estimation error for head-mounted eye trackers. German research center for artificial intelligence (DFKI) research reports, p. 10 (2015). https://perceptual.mpi-inf.mpg.de/files/2015/01/gazequality.pdf. Cited 21 Dec 2014
- 4.Bradski, G.: The OpenCV Library. Dr. Dobb’s. J. Softw. Tools 25 (11), 120, 122–125 (2000)Google Scholar
- 5.Bruce, N., Tsotsos, J.: Saliency based on information maximization. Adv. Neural Inf. Process. Syst. 18, 155–162 (2005)Google Scholar
- 6.Cournia, N., Smith, J.D., Duchowski, A.T.: Gaze-vs. hand-based pointing in virtual environments. In: CHI’03 extended abstracts on human factors in computing systems, pp. 772–773. ACM (2003)Google Scholar
- 7.Duchowski, A.T., Pelfrey, B., House, D.H., Wang, R.: Measuring gaze depth with an eye tracker during stereoscopic display. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, p. 15. ACM (2011)Google Scholar
- 8.Essig, K., Pomplun, M., Ritter, H.: A neural network for 3D gaze recording with binocular eye trackers. Intern. J. Parallel Emerg. Distrib. Syst. 21, 79–95 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Häkkinen, J., Kawai, T., Takatalo, J., Mitsuya, R., Nyman, G.: What do people look at when they watch stereoscopic movies? In: Woods, A.J., Holliman, N.S., Dodgson, N.A. (eds.) Stereoscopic Displays and Applications XXI, International Society for Optics and Photonics, Bellingham, Washington USA (2010)Google Scholar
- 10.Hanhart, P., Ebrahimi, T.: EYEC3D: 3D video eye tracking dataset. In: 2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX), pp. 55–56. IEEE (2014)Google Scholar
- 11.Heng, L., Li, B., Pollefeys, M.: Camodocal: automatic intrinsic and extrinsic calibration of a rig with multiple generic cameras and odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1793–1800. IEEE (2013)Google Scholar
- 12.Hennessey, C., Lawrence, P.: Noncontact binocular eye-gaze tracking for point-of-gaze estimation in three dimensions. IEEE Trans. Biomed. Eng. 56, 790–799 (2009)CrossRefGoogle Scholar
- 13.Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., van de Weijer, J.: Eye tracking: a comprehensive guide to methods and measures. Oxford University Press, New York (2011)Google Scholar
- 14.Howard, I.P.: Preceiving in depth. Oxford University Press, Oxford (2012)Google Scholar
- 15.Huynh-Thu, Q., Schiatti, L.: Examination of 3D visual attention in stereoscopic video content. In: Rogowitz, B.E., Pappas, T.N. (eds.) IS&T/SPIE Electronic Imaging, pp. 78650J–78650J. International Society for Optics and Photonics, Bellingham, Washington USA (2011)Google Scholar
- 16.Jansen, L., Onat, S., König, P.: Influence of disparity on fixation and saccades in free viewing of natural scenes. J. Vis. 9, 1–19 (2009)CrossRefGoogle Scholar
- 17.Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: International Conference on Computer Vision, pp. 2106–2113. IEEE (2009)Google Scholar
- 18.Kassner, M., Patera, W., Bulling, A.: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. In: Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication – UbiComp’14 Adjunct, pp. 1151–1160. ACM (2014)Google Scholar
- 19.Kensler, A., Shirley, P.: Optimizing ray-triangle intersection via automated search. In: IEEE Symposium on Interactive Ray Tracing, pp. 33–38. IEEE (2006)Google Scholar
- 20.Ki, J., Kwon, YM.: 3D gaze estimation and interaction. In: 3DTV Conference: The True Vision – Capture, Transmission and Display of 3D Video, pp. 373–376. IEEE (2008)Google Scholar
- 21.Koenderink, J.J.: Pictorial relief. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 356, 1071–1086 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth matters: influence of depth cues on visual saliency. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012, pp. 101–115. Springer Berlin Heidelberg (2012)Google Scholar
- 23.Lee, J.W., Cho, C.W., Shin, K.Y., Lee, E.C., Park, K.R.: 3D gaze tracking method using purkinje images on eye optical model and Pupil. Opt. Lasers Eng. 50, 736–751 (2012)CrossRefGoogle Scholar
- 24.Maggia, C., Guyader, N., Guérin-Dugué, A.: Using natural versus artificial stimuli to perform calibration for 3D gaze tracking. In: Rogowitz, B.E., Pappas, T.N., de Ridder, H. (eds.) Human Vision and Electronic Imaging XVIII, International Society for Optics and Photonics, Bellingham, Washington USA (2013)Google Scholar
- 25.Mathe, S., Sminchisescu, C.: Dynamic eye movement datasets and learnt saliency models for visual action recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012, pp. 842–856. Springer Berlin Heidelberg (2012)CrossRefGoogle Scholar
- 26.Pfeiffer, T., Latoschik, M.E., Wachsmuth, I.: Evaluation of binocular eye trackers and algorithms for 3D gaze interaction in virtual reality environments. J. Virtual Real. Broadcast. 5, 1860–2037 (2008)Google Scholar
- 27.Pfeiffer, T., Renner, P.: Eyesee3d: a low-cost approach for analyzing mobile 3d eye tracking data using computer vision and augmented reality technology. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 369–376. ACM (2014)Google Scholar
- 28.Ramanathan, S., Katti, H., Sebe, N., Kankanhalli, M., Chua, T.-S.: An eye fixation database for saliency detection in images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision – ECCV 2010, pp. 30–43. Springer Berlin Heidelberg (2010)CrossRefGoogle Scholar
- 29.Ramasamy, C., House, D.H., Duchowski, A.T., Daugherty, B.: Using eye tracking to analyze stereoscopic filmmaking. In: Posters on SIGGRAPH’09, p. 1. ACM (2009)Google Scholar
- 30.Ritter, J.: An efficient bounding sphere. In: Glassner, A.S. (eds.) Graphics Gems, pp. 301–303. Academic Press, Boston (1990)CrossRefGoogle Scholar
- 31.Schneider, P.J., Eberly, D.: Geometric Tools for Computer Graphics. Elsevier science Inc., New York (2002)Google Scholar
- 32.Stellmach, S., Nacke, L., Dachselt, R.: 3d attentional maps: aggregated gaze visualizations in three-dimensional virtual environments. In: Proceedings of the International Conference on Advanced Visual Interfaces, pp. 345–348. ACM (2010)Google Scholar
- 33.Toet, A.: Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2131–2146 (2011)CrossRefGoogle Scholar