Advertisement

A Task-Based View on the Visual Analysis of Eye-Tracking Data

  • Kuno KurzhalsEmail author
  • Michael Burch
  • Tanja Blascheck
  • Gennady Andrienko
  • Natalia Andrienko
  • Daniel Weiskopf
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

The visual analysis of eye movement data has become an emerging field of research leading to many new visualization techniques in recent years. These techniques provide insight beyond what is facilitated by traditional attention maps and gaze plots, providing important means to support statistical analysis and hypothesis building. There is no single “all-in-one” visualization to solve all possible analysis tasks. In fact, the appropriate choice of a visualization technique depends on the type of data and analysis task. We provide a taxonomy of analysis tasks that is derived from literature research of visualization techniques and embedded in our pipeline model of eye-tracking visualization. Our task taxonomy is linked to references to representative visualization techniques and, therefore, it is a basis for choosing appropriate methods of visual analysis. We also elaborate on how far statistical analysis with eye-tracking metrics can be enriched by suitable visualization and visual analytics techniques to improve the extraction of knowledge during the analysis process.

Keywords

Data Dimension Analysis Task Visualization Technique Recurrence Plot Additional Data Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within the Cluster of Excellence in Simulation Technology (EXC 310) at the University of Stuttgart. This work was supported in part by EU in projects datAcron (grant agreement 687591) and VaVeL (grant agreement 688380).

References

  1. 1.
    Andrienko, G.L., Andrienko, N.V., Burch, M., Weiskopf, D.: Visual analytics methodology for eye movement studies. IEEE Trans. Visual. Comput. Graph. 18 (12), 2889–2898 (2012)CrossRefGoogle Scholar
  2. 2.
    Blascheck, T., Burch, M., Raschke, M., Weiskopf, D.: Challenges and perspectives in big eye-movement data visual analytics. In: Proceedings of the 1st International Symposium on Big Data Visual Analytics. IEEE, Piscataway (2015)Google Scholar
  3. 3.
    Blascheck, T., John, M., Kurzhals, K., Koch, S., Ertl, T.: VA2: a visual analytics approach for evaluating visual analytics applications. IEEE Trans. Visual. Comput. Graph. 22 (01), 61–70 (2016)CrossRefGoogle Scholar
  4. 4.
    Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: State-of-the-art of visualization for eye tracking data. In: EuroVis– STARs, pp. 63–82. The Eurographics Association (2014)Google Scholar
  5. 5.
    Blascheck, T., Kurzhals, K., Raschke, M., Strohmaier, S., Weiskopf, D., Ertl, T.: AOI hierarchies for visual exploration of fixation sequences. In: Proceedings of the Symposium on Eye Tracking Research & Applications. ACM, New York (2016)Google Scholar
  6. 6.
    Blascheck, T., Raschke, M., Ertl, T.: Circular heat map transition diagram. In: Proceedings of the 2013 Conference on Eye Tracking South Africa, pp. 58–61. ACM, New York (2013)Google Scholar
  7. 7.
    Bojko, A.: Informative or misleading? Heatmaps deconstructed. In: Jacko, J. (ed.) Human-Computer Interaction. New Trends, LNCS’09, pp. 30–39. Springer, Berlin (2009)CrossRefGoogle Scholar
  8. 8.
    Burch, M., Andrienko, G.L., Andrienko, N.V., Höferlin, M., Raschke, M., Weiskopf, D.: Visual task solution strategies in tree diagrams. In: Proceedings of the IEEE Pacific Visualization Symposium, pp. 169–176. IEEE, Piscataway (2013)Google Scholar
  9. 9.
    Burch, M., Kull, A., Weiskopf, D.: AOI Rivers for visualizing dynamic eye gaze frequencies. Comput. Graph. Forum 32 (3), 281–290 (2013)CrossRefGoogle Scholar
  10. 10.
    Bylinskii, Z., Borkin, M.A., Kim, N.W., Pfister, H., Oliva, A.: Eye fixation metrics for large scale evaluation and comparison of information visualizations. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds.) Eye Tracking and Visualization. Foundations, Techniques, and Applications (ETVIS 2015), pp. 235–255. Springer, Heidelberg (2016)Google Scholar
  11. 11.
    Chi, E.H.: A taxonomy of visualization techniques using the data state reference model. In: IEEE Symposium on Information Visualization, pp. 69–75. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  12. 12.
    Crowe, E.C., Narayanan, N.H.: Comparing interfaces based on what users watch and do. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 29–36. ACM, New York (2000)Google Scholar
  13. 13.
    De Urabain, I.R.S., Johnson, M.H., Smith, T.J.: GraFIX: a semiautomatic approach for parsing low-and high-quality eye-tracking data. Behav. Res. Methods 47 (1), 53–72 (2015)CrossRefGoogle Scholar
  14. 14.
    Demiralp, C., Cirimele, J., Heer, J., Card, S.: The VERP Explorer: a tool for exploring eye movements of visual-cognitive tasks using recurrence plots. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds.) Eye Tracking and Visualization. Foundations, Techniques, and Applications (ETVIS 2015), pp. 41–55. Springer, Heidelberg (2016)Google Scholar
  15. 15.
    Duchowski, A.: Eye Tracking Methodology: Theory and Practice, 2nd edn. Science+Business Media. Springer, New York (2007)zbMATHGoogle Scholar
  16. 16.
    Duchowski, A.T., Driver, J., Jolaoso, S., Tan, W., Ramey, B.N., Robbins, A.: Scan path comparison revisited. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 219–226. ACM, New York (2010)Google Scholar
  17. 17.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39 (11), 27–34 (1996)CrossRefGoogle Scholar
  18. 18.
    Goldberg, J.H., Helfman, J.I.: Scanpath clustering and aggregation. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 227–234. ACM, New York (2010)Google Scholar
  19. 19.
    Goldberg, J.H., Helfman, J.I.: Visual scanpath representation. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 203–210. ACM, New York (2010)Google Scholar
  20. 20.
    Grindinger, T., Duchowski, A., Sawyer, M.: Group-wise similarity and classification of aggregate scanpaths. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 101–104. ACM, New York (2010)Google Scholar
  21. 21.
    Haber, R.B., McNabb, D.A.: Visualization idioms: a conceptual model for visualization systems. In: Nielson, G.M., Shriver, B.D., Rosenblum, L.J. (eds.) Visualization in Scientific Computing, pp. 74–93. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  22. 22.
    Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. In: STAR Proceedings of Eurographics, pp. 95–116. The Eurographics Association (2013)Google Scholar
  23. 23.
    Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press, Oxford (2011)Google Scholar
  24. 24.
    Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cognit. Psychol. 8, 441–480 (1976)CrossRefGoogle Scholar
  26. 26.
    Kim, S.H., Dong, Z., Xian, H., Upatising, B., Yi, J.S.: Does an eye tracker tell the truth about visualizations? Findings while investigating visualizations for decision making. IEEE Trans. Visual. Comput. Graph. 18 (12), 2421–2430 (2012)CrossRefGoogle Scholar
  27. 27.
    Kirchner, H., Thorpe, S.J.: Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vis. Res. 46 (11), 1762–1776 (2006)CrossRefGoogle Scholar
  28. 28.
    Kurzhals, K., Bopp, C.F., Bässler, J., Ebinger, F., Weiskopf, D.: Benchmark data for evaluating visualization and analysis techniques for eye tracking for video stimuli. In: Proceedings of the Workshop Beyond Time and Errors: Novel Evaluation Methods for Visualization, pp. 54–60. ACM, New York (2014)Google Scholar
  29. 29.
    Kurzhals, K., Fisher, B.D., Burch, M., Weiskopf, D.: Evaluating visual analytics with eye tracking. In: Proceedings of the Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, pp. 61–69. ACM, New York (2014)Google Scholar
  30. 30.
    Kurzhals, K., Heimerl, F., Weiskopf, D.: ISeeCube: visual analysis of gaze data for video. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 43–50. ACM, New York (2014)Google Scholar
  31. 31.
    Kurzhals, K., Hlawatsch, M., Heimerl, F., Burch, M., Ertl, T., Weiskopf, D.: Gaze stripes: image-based visualization of eye tracking data. IEEE Trans. Visual. Comput. Graph. 22 (1), 1005–1014 (2016)CrossRefGoogle Scholar
  32. 32.
    Kurzhals, K., Weiskopf, D.: Space-time visual analytics of eye-tracking data for dynamic stimuli. IEEE Trans. Visual. Comput. Graph. 19 (12), 2129–2138 (2013)CrossRefGoogle Scholar
  33. 33.
    Kurzhals, K., Weiskopf, D.: AOI transition trees. In: Proceedings of the Graphics Interface Conference, pp. 41–48. Canadian Information Processing Society (2015)Google Scholar
  34. 34.
    Li, X., Çöltekin, A., Kraak, M.J.: Visual exploration of eye movement data using the space-time-cube. In: Fabrikant, S., Reichenbacher, T., Kreveld, M., Christoph, S. (eds.) Geographic Information Science, LNCS’10, pp. 295–309. Springer, Berlin (2010)CrossRefGoogle Scholar
  35. 35.
    Nguyen, T.H.D., Richards, M., Isaacowitz, D.M.: Interactive visualization for understanding of attention patterns. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds.) Eye Tracking and Visualization. Foundations, Techniques, and Applications (ETVIS 2015), pp. 23–39. Springer, Heidelberg (2016)Google Scholar
  36. 36.
    Pirolli, P., Card, S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of the International Conference on Intelligence Analysis, vol. 5, pp. 2–4 (2005)Google Scholar
  37. 37.
    Räihä, K.J., Aula, A., Majaranta, P., Rantala, H., Koivunen, K.: Static visualization of temporal eye-tracking data. In: Costabile, M.F., Paternò, F. (eds.) Human-Computer Interaction-INTERACT 2005, LNCS’05, vol. 3585, pp. 946–949. Springer, Berlin/New York (2005)CrossRefGoogle Scholar
  38. 38.
    Raschke, M., Herr, D., Blascheck, T., Burch, M., Schrauf, M., Willmann, S., Ertl, T.: A visual approach for scan path comparison. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 135–142. ACM, New York (2014)Google Scholar
  39. 39.
    Richardson, D.C., Dale, R.: Looking to understand: the coupling between speakers’ and listeners’ eye movements and its relationship to discourse comprehension. Cognit. Sci. 29 (6), 1045–1060 (2005)CrossRefGoogle Scholar
  40. 40.
    Rodrigues, R., Veloso, A., Mealha, O.: A television news graphical layout analysis method using eye tracking. In: Proceedings of the International Conference on Information Visualization (IV), pp. 357–362. IEEE Computer Society, Los Alamitos (2012)Google Scholar
  41. 41.
    Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 71–78. ACM, New York (2000)Google Scholar
  42. 42.
    Schulz, C., Burch, M., Beck, F., Weiskopf, D.: Visual data cleansing of low-level eye-tracking data. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds.) Eye Tracking and Visualization. Foundations, Techniques, and Applications (ETVIS 2015), pp. 199–216. Springer, Heidelberg (2016)Google Scholar
  43. 43.
    Smith, T.J., Mital, P.K.: Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes. J. Vis. 13 (8), 16:1–16:24 (2013)Google Scholar
  44. 44.
    Stellmach, S., Nacke, L., Dachselt, R.: Advanced gaze visualizations for three-dimensional virtual environments. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 109–112. ACM, New York (2010)Google Scholar
  45. 45.
    Tsang, H.Y., Tory, M.K., Swindells, C.: eSeeTrack – visualizing sequential fixation patterns. IEEE Trans. Visual. Comput. Graph. 16 (6), 953–962 (2010)CrossRefGoogle Scholar
  46. 46.
    Tversky, B., Morrison, J.B., Bétrancourt, M.: Animation: can it facilitate? Int. J. Hum. Comput. Stud. 57 (4), 247–262 (2002)CrossRefGoogle Scholar
  47. 47.
    Weibel, N., Fouse, A., Emmenegger, C., Kimmich, S., Hutchins, E.: Let’s look at the cockpit: exploring mobile eye-tracking for observational research on the flight deck. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 107–114. ACM, New York (2012)Google Scholar
  48. 48.
    West, J.M., Haake, A.R., Rozanski, E.P., Karn, K.S.: eyePatterns: software for identifying patterns and similarities across fixation sequences. In: Proceedings of the Symposium on Eye Tracking Research & Applications, pp. 149–154. ACM, New York (2006)Google Scholar
  49. 49.
    Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kuno Kurzhals
    • 1
    Email author
  • Michael Burch
    • 1
  • Tanja Blascheck
    • 2
  • Gennady Andrienko
    • 3
    • 4
  • Natalia Andrienko
    • 3
  • Daniel Weiskopf
    • 1
  1. 1.University of StuttgartStuttgartGermany
  2. 2.University of StuttgartStuttgartGermany
  3. 3.Fraunhofer Institute IAIS, Schloss BirlinghovenSankt AugustinGermany
  4. 4.City University London, London EC1V OHBLondonUK

Personalised recommendations