Skip to main content

Parasitic Infections in Humans and Animals

  • Chapter
  • First Online:
Comparative Medicine

Abstract

Parasites are organisms that depend on a host for feeding and reproduction and belong to various unrelated taxa, primarily protozoa, helminths and arthropods. Complex life cycles have often lead to extreme adaptations; nevertheless parasites may harm their hosts and even cause serious disease and death. Transmission of parasite stages can be environmental, nutritional or vector-borne. Among the most important human protozoan parasites in a global context are Leishmania, Plasmodium (both transmitted by bloodsucking arthropods) and Toxoplasma which is soil- or food-borne. Parasitic worms (helminths) relevant for human health include Echinococcus, Toxocara, hookworms (all soil-borne) and Dirofilaria (transmitted by mosquitoes). Various arthropods (ticks, insects) are involved in the transmission of pathogens due to their blood-feeding behaviour. They are especially involved in transmission cycles between animals and humans (zoonotic infections). Research on parasites and their interactions with the host requires suitable animal models. For parasites with a wide host range or those naturally infecting rodent species available as laboratory animals, established models are available. Others, like the human malaria parasites, require sophisticated and often costly genetic manipulation to allow for infection in non-natural rodent hosts. Alternatively, surrogate models of closely related helminth species in rodent models are used to study human parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature

  • Auer H, Aspöck H (2014a) Helminths and helminthoses in Central Europe: general overview and diseases caused by trematodes (flukes). Wien Med Wochenschr 164(19–20):405–413

    Article  PubMed  Google Scholar 

  • Auer H, Aspöck H (2014b) Helminths and helminthoses in Central Europe: diseases caused by cestodes (tapeworms). Wien Med Wochenschr 164(19–20):414–423

    Article  PubMed  Google Scholar 

  • Auer H, Aspöck H (2014c) Helminths and helminthoses in Central Europe: diseases caused by nematodes (roundworms). Wien Med Wochenschr 164(19–20):424–434

    Article  PubMed  Google Scholar 

  • Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, Sinden RE, Leroy D (2012) The activities of current antimalarial drugs on the life cycle stages of plasmodium: a comparative study with human and rodent parasites. PLoS Med 9(2):e1001169

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubey JP, Beattie C (1988) Toxoplasmosis of animals and man. CRC Press. Inc., Boca Raton

    Google Scholar 

  • Finkelman FD, Shea-Donohue T, Goldhill J, Sullivan CA, Morris SC, Madden KB, Gause WC, Urban JF Jr (1997) Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu Rev Immunol 15:505–533

    Article  CAS  PubMed  Google Scholar 

  • Frech C, Chen N (2011) Genome comparison of human and non–human malaria parasites reveals species subset–specific genes potentially linked to human disease. PLoS Comput Biol 7(12):e1002320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good MF, Hawkes MT, Yanow SK (2015) Humanized mouse models to study cell–mediated immune responses to liver-stage malaria vaccines. Trends Parasitol 31(11):583–594

    Article  CAS  PubMed  Google Scholar 

  • Gramiccia M, Gradoni L (2005) The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol 35(11–12):1169–1180

    Article  PubMed  Google Scholar 

  • Lipoldová M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7(4):294–305

    Article  PubMed  Google Scholar 

  • Louis JA, Conceiçao–Silva F, Himmelrich H, Tacchini–Cottier F, Launois P (1998) Anti–leishmania effector functions of CD4+ Th1 cells and early events instructing Th2 cell development and susceptibility to Leishmania major in BALB/c mice. Adv Exp Med Biol 452:53–60

    Article  CAS  PubMed  Google Scholar 

  • Mlambo G, Kumar N (2008) Transgenic rodent Plasmodium berghei parasites as tools for assessment of functional immunogenicity and optimization of human malaria vaccines. Eukaryot Cell 7(11):1875–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poeppl W, Obwaller A, Weiler M, Burgmann H, Mooseder G, Lorentz S, Rauchenwald F, Aspöck H, Walochnik J, Naucke TJ (2013) Emergence of sandflies (Phlebotominae) in Austria, a Central European country. Parasitol Res 112(12):4231–4237

    Article  PubMed  PubMed Central  Google Scholar 

  • Sack DL, Melby PC (2015) Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol 108:19.2.1–19.2.24

    Article  Google Scholar 

  • Sibley LD, Mordue D, Howe DK (1999) Experimental approaches to understanding virulence in toxoplasmosis. Immunobiology 201(2):210–224

    Article  CAS  PubMed  Google Scholar 

  • Sibley LD, Mordue DG, Su C, Robben PM, Howe DK (2002) Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philos Trans R Soc Lond B Biol Sci 357(1417):81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano-Gallego L, Riera C, Roura X, Iniesta L, Gallego M, Valladares JE, Fisa R, Castillejo S, Alberola J, Ferrer L, Arboix M, Portús M (2001) Leishmania infantum–specific IgG, IgG1 and IgG2 antibody responses in healthy and ill dogs from endemic areas. Evolution in the course of infection and after treatment. Vet Parasitol 96(4):265–276

    Article  CAS  PubMed  Google Scholar 

  • Subauste C (2012) Animal models for Toxoplasma gondii infection. Curr Protoc Immunol 19:19.3.1–19.3.23

    Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30(12–13):1217–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walochnik J, Aspöck H (2012) Protozoan pathogens: identification. In: Encyclopedia of life sciences (ELS), 3rd edn. John Wiley and Sons Ltd, Chichester

    Google Scholar 

  • Walochnik J, Aspöck H (2014) Protozoa and protozoan infections of humans in Central Europe. Wien Med Wochenschr 164(19–20):435–445 [in German]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Joachim Prof., DVM, Dipl.EVPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Walochnik, J., Auer, H., Joachim, A. (2017). Parasitic Infections in Humans and Animals. In: Jensen-Jarolim, E. (eds) Comparative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-47007-8_12

Download citation

Publish with us

Policies and ethics