Skip to main content

The Role of Thin and Mobile Electric Double Layer in Water Purification and Energy Storage

  • Chapter
  • First Online:
Nanoscale Fluid Transport

Part of the book series: Springer Theses ((Springer Theses))

  • 564 Accesses

Abstract

It is well known that the electric double layer plays important roles in a variety of applications, ranging from biology to materials sciences. Many studied the electric double layer using a variety of techniques, and as a result our understanding is mature, although not complete. Based on detailed understanding, I expect that by manipulating the electric double layer we could advance tremendously applications in the water-energy nexus. This is particularly true for electric double layer capacitors and capacitive desalination devices. However, such manipulation is not straightforward because of a competition of phenomena that occur within the electric double layer itself, including solvation effects, excluded volume phenomena, and ion-ion correlations. Using molecular dynamics simulations, I designed a composite graphene-based electrode to manipulate structural and dynamical properties of the electric double layer. My design favours the formation of the compact Helmholtz layer. Inherent to my design is that the compact Helmholtz layer not only is atomically thick, but it is also highly mobile in the direction parallel to the charged surface. I suggest here how to exploit the properties of the engineered electric double layer towards developing a new continuous desalination process that combines the advantages of membrane and capacitive desalination processes, reducing their shortcomings. Insights on the molecular mechanisms relevant to the water-energy nexus are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannon, M. A., et al. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.

    Article  CAS  Google Scholar 

  2. Tour, J. M., Kittrell, C., & Colvin, V. L. (2010). Green carbon as a bridge to renewable energy. Nature Materials, 9(11), 871–874.

    Article  CAS  Google Scholar 

  3. Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.

    Article  CAS  Google Scholar 

  4. Miller, J. R., & Simon, P. (2008). Materials science—Electrochemical capacitors for energy management. Science, 321(5889), 651–652.

    Article  CAS  Google Scholar 

  5. Helmholtz, H. (1853). Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 165(6), 211–233.

    Article  Google Scholar 

  6. Bard, A., & Fraulkner, L. (2001). Electrochemical methods: Fundamentals and applications. New York: Wiley.

    Google Scholar 

  7. Butt, H. J., & Kappl, M. (2010). Surface and interfacial forces. Weinheim, Germany: Wiley.

    Book  Google Scholar 

  8. Huang, J. S., Qiao, R., Sumpter, B. G., & Meunier, V. (2010). Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. Journal of Materials Research, 25(8), 1469–1475.

    Article  CAS  Google Scholar 

  9. Schmickler, W. (1996). Electronic effects in the electric double layer. Chemical Reviews, 96(8), 3177–3200.

    Article  CAS  Google Scholar 

  10. Gouy (1909). On the constitution of the electric charge at the surface of an electrolyte. Cr Hebd Acad Sci, 149, 654–657.

    CAS  Google Scholar 

  11. Chapman, D. L. (1913). A contribution to the theory of electrocapillarity. Philosophical Magazine, 25(148), 475–481.

    Article  Google Scholar 

  12. Israelachvili, J. (1991). Intermolecular & surface forces (2nd ed.). New York: Academic Press.

    Google Scholar 

  13. Stern, O. (1924). The theory of the electrolytic double shift. Z Elktrochem Angew P 30:508–516.

    Google Scholar 

  14. Wang, H. N., & Pilon, L. (2011). Accurate simulations of electric double layer capacitance of ultramicroelectrodes. Journal of Physical Chemistry C, 115(33), 16711–16719.

    Article  CAS  Google Scholar 

  15. Zhao, R., Biesheuvel, P. M., Miedema, H., Bruning, H., & van der Wal, A. (2010). Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters, 1(1), 205–210.

    Article  CAS  Google Scholar 

  16. Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.

    Article  CAS  Google Scholar 

  17. Chmiola, J., et al. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760–1763.

    Article  CAS  Google Scholar 

  18. Largeot, C., et al. (2008). Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 130(9), 2730–2731.

    Article  CAS  Google Scholar 

  19. Fedorov, M. V., & Kornyshev, A. A. (2008). Ionic liquid near a charged wall: Structure and capacitance of electrical double layer. The Journal of Physical Chemistry B, 112(38), 11868–11872.

    Article  CAS  Google Scholar 

  20. Vatamanu, J., Borodin, O., & Smith, G. D. (2010). Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. Journal of the American Chemical Society, 132(42), 14825–14833.

    Article  CAS  Google Scholar 

  21. Shim, Y., Kim, H. J., & Jung, Y. (2012). Graphene-based supercapacitors in the parallel-plate electrode configuration: Ionic liquids versus organic electrolytes. Faraday Discussions, 154, 249–263.

    Article  CAS  Google Scholar 

  22. Konatham, D., Yu, J., Ho, T. A., & Striolo, A. (2013). Simulation insights for graphene-based water desalination membranes. Langmuir, 29(38), 11884–11897.

    Article  CAS  Google Scholar 

  23. Cohen-Tanugi, D., & Grossman, J. C. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602–3608.

    Article  CAS  Google Scholar 

  24. O’Hern, S. C., et al. (2014). Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 234–1241.

    Google Scholar 

  25. Garaj, S., Liu, S., Golovchenko, J. A., & Branton, D. (2013). Molecule-hugging graphene nanopores. Proceedings of the National Academy of Sciences, 110(30), 12192–12196.

    Article  CAS  Google Scholar 

  26. Koenig, S. P., Wang, L. D., Pellegrino, J., & Bunch, J. S. (2012). Selective molecular sieving through porous graphene. Nature Nanotechnology, 7(11), 728–732.

    Article  CAS  Google Scholar 

  27. Giovambattista, N., Rossky, P. J., & Debenedetti, P. G. (2006). Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Physical Review E, 73(4), 041604.

    Article  Google Scholar 

  28. Huang, H. B., et al. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun, 4, 2979.

    Google Scholar 

  29. Merlet, C., et al. (2012). On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 11(4), 306–310.

    Article  CAS  Google Scholar 

  30. Merlet, C., et al. (2013). Simulating supercapacitors: Can we model electrodes as constant charge surfaces? J Phys Chem Lett, 4(2), 264–268.

    Article  CAS  Google Scholar 

  31. Ho, T. A., & Striolo, A. (2013). Polarizability effects in molecular dynamics simulations of the graphene-water interface. The Journal of Chemical Physics, 138(5), 054117.

    Article  Google Scholar 

  32. Cheng, A., & Steele, W. A. (1990). Computer-simulation of ammonia on graphite. 1. Low-temperature structure of monolayer and bilayer films. The Journal of Chemical Physics, 92(6), 3858–3866.

    Article  CAS  Google Scholar 

  33. Ho, T. A., & Striolo, A. (2014). Molecular dynamics simulation of the graphene-water interface: Comparing water models. Molecular Simulation, 40(14), 1190–1200.

    Article  CAS  Google Scholar 

  34. Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.

    Article  CAS  Google Scholar 

  35. Dang, L. X. (1995). Mechanism and thermodynamics of ion selectivity in aqueous-solutions of 18-crown-6 ether: a molecular-dynamics study. Journal of the American Chemical Society, 117(26), 6954–6960.

    Article  CAS  Google Scholar 

  36. Levin, Y. (2009). Polarizable ions at interfaces. Physical Review Letters, 102(14), 147803.

    Article  Google Scholar 

  37. Huang, J. Y., et al. (2013). Nanowire liquid pumps. Nature Nanotechnology, 8(4), 277–281.

    Article  CAS  Google Scholar 

  38. Jungwirth, P., & Tobias, D. J. (2002). Ions at the air/water interface. The Journal of Physical Chemistry, 106(25), 6361–6373.

    Article  CAS  Google Scholar 

  39. Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. The Journal of Chemical Physics, 135(14), 144701.

    Article  Google Scholar 

  40. Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.

    Article  CAS  Google Scholar 

  41. Gong, X. J., et al. (2008). Enhancement of water permeation across a nanochannel by the structure outside the channel. Physical Review Letters, 101(25), 257801.

    Article  Google Scholar 

  42. Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences, 108(39), 16170–16175.

    Article  CAS  Google Scholar 

  43. Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer.

    Google Scholar 

  44. Holt, J. K., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.

    Article  CAS  Google Scholar 

  45. Holt, JK., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034.

    Google Scholar 

  46. Whitby, M., & Quirke, N. (2007). Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2(2), 87–94.

    Article  CAS  Google Scholar 

  47. Smith, D. E., & Dang, L. X. (1994). Computer-simulations of Nacl association in polarizable water. The Journal of Chemical Physics, 100(5), 3757–3766.

    Article  CAS  Google Scholar 

  48. Yang, L., Fishbine, B. H., Migliori, A., & Pratt, L. R. (2009). Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. Journal of the American Chemical Society, 131(34), 12373–12376.

    Article  CAS  Google Scholar 

  49. Shim, Y., & Kim, H. J. (2010). Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study. ACS Nano, 4(4), 2345–2355.

    Article  CAS  Google Scholar 

  50. Kalra, A., Garde, S., & Hummer, G. (2003). Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 100(18), 10175–10180.

    Article  CAS  Google Scholar 

  51. Striolo, A. (2006). The mechanism of water diffusion in narrow carbon nanotubes. Nano Letters, 6(4), 633.

    Article  CAS  Google Scholar 

  52. Suss, M. E., et al. (2012). Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 5(11), 9511–9519.

    Article  CAS  Google Scholar 

  53. Porada, S., Sales, B. B., Hamelers, H. V. M., & Biesheuvel, P. M. (2012). Water desalination with wires. The Journal of Physical Chemistry Letters, 3(12), 1613–1618.

    Article  CAS  Google Scholar 

  54. Kalluri, R. K., Konatham, D., & Striolo, A. (2011). Aqueous NaCl Solutions within charged carbon-slit pores: Partition Coefficients and density distributions from molecular dynamics simulations. Journal of Physical Chemistry C, 115(28), 13786–13795.

    Article  CAS  Google Scholar 

  55. Pendergast, M. M., & Hoek, E. M. V. (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946–1971.

    Article  CAS  Google Scholar 

  56. Christen, K. (2006). Desalination technology could clean up wastewater from coal-bed methane production. Environmental Science and Technology, 40(3), 639.

    Article  Google Scholar 

  57. Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: An alternative desalination solution. Desalination, 183(1–3), 327–340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Anh Ho .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ho, T.A. (2017). The Role of Thin and Mobile Electric Double Layer in Water Purification and Energy Storage. In: Nanoscale Fluid Transport. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-47003-0_4

Download citation

Publish with us

Policies and ethics