Impact of Climate Change and Loss of Habitat on Sirenians

  • Helene MarshEmail author
  • Eduardo Moraes Arraut
  • Lucy Keith Diagne
  • Holly Edwards
  • Miriam Marmontel
Part of the Animal Welfare book series (AWNS, volume 17)


Although the impacts of climate change on the welfare of individual manatees and dugongs are still uncertain, the effects are likely to be through indirect interactions between meteorological and biotic factors and the human responses to climate change. We divided the potential impacts into (1) those that will potentially affect sirenians directly including temperature increases, sea-level rise, increased intensity of extreme weather events and changes in rainfall patterns and (2) indirect impacts that are likely to cause harm through habitat loss and change and the increase in the likelihood of harmful algal blooms and disease outbreaks. The habitat modification accompanying sea-level rise is likely to decrease the welfare of sirenians including increased mortality. Many species of tropical seagrasses live close to their thermal limits and will have to up-regulate their stress-response systems to tolerate the sublethal temperature increases caused by climate change. The capacity of seagrass species to evoke such responses is uncertain, as are the effects of elevated carbon dioxide on such acclimation responses. The increase in the intensity of extreme weather events associated with climate change is likely to decrease the welfare of sirenians through increased mortality from strandings, as well as habitat loss and change. These effects are likely to increase the exposure of sirenians to disease and their vulnerability to predators, including human hunters. Climate-related hazards will also exacerbate other stressors, especially for people living in poverty. Thus the risks to sirenians from climate change are likely to be greatest for small populations of dugongs and manatees occurring in low-income countries. The African manatee will be particularly vulnerable because of the high levels of human poverty throughout most of its range resulting in competition for resources, including protein from manatee meat.


  1. Allan JD, Abell R, Hogan Z et al (2005) Overfishing of inland waters. Bioscience 55:1041–1051CrossRefGoogle Scholar
  2. Allen S, Marsh H, Hodgson A (2004) Occurrence and conservation of the dugong Sirenia: Dugongidae in new South Wales. Proc Linnean Soc NSW 125:211–216Google Scholar
  3. Allison EH, Perry AL, Badjec MC et al (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi: 10.1111/j.1467-2979.2008.00310.x/full CrossRefGoogle Scholar
  4. Arora VK, Boer GJ (2001) Effects of simulated climate change on the hydrology of major river basins. J Geophys Res 106(D4):3335–3348CrossRefGoogle Scholar
  5. Arraut EM, Marmontel M (2016) Amazonian manatee threatened with extinction by massive dam-building plan in the Amazon. Science. eLetter: Accessed 6 11 16
  6. Arraut EM, Marmontel M, Mantovani JE et al (2010) The lesser of two evils: seasonal migrations of Amazonian manatees in the western Amazon. J Zool 280:247–256. doi: 10.1111/j.1469-7998.2009.00655.x CrossRefGoogle Scholar
  7. Atta-Mills J, Alder J, Sumaila UR (2004) The decline of a regional fishing nation: the case of Ghana and West Africa. Nat Res Forum 28:13–21CrossRefGoogle Scholar
  8. Barcellos C, Monteiro AMV, Corvalán C, Gurgel C, Gurgel HC, Carvalho MS, Artaxo P, Hacon S, Ragoni V (2009) Mudanças climáticas e ambientais e as doenças infecciosas: cenários e incertezas para o Brasil. Epidemio Serv Saúde (Brasília) 18(3): jul-set 2009Google Scholar
  9. Barlas ME, Deutsch CJ, de Wit M et al. (2011) Florida manatee cold-related unusual mortality event, January–April 2010. Final report to USFWS (grant 40181AG037). Available via Florida Fish and Wildlife Conservation Commission Accessed 30 April 2016
  10. Beckett J (1987) Torres Strait islanders: custom and colonialism. Cambridge University Press, CambridgeGoogle Scholar
  11. Bender MA, Knutson TR, Tuleya RE et al (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458PubMedCrossRefGoogle Scholar
  12. Bloetscher F, Meeroff DH, Heimlich BN (2009) Improving the resilience of a municipal water utility against the likely impacts of climate change—a case study: city of pompano beach water utility. Florida Atlantic University, USAGoogle Scholar
  13. Bonde RK, Aguirre AA, Powell J (2004) Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries? EcoHealth 1:255–262CrossRefGoogle Scholar
  14. Bossart GD, Baden DG, Ewing R et al (1998) Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic and immunohistochemical features. Toxicol Pathol 26:276–282PubMedCrossRefGoogle Scholar
  15. Bossart GD, Meisner RA, Rommel SA et al (2003) Pathological features of the Florida manatee cold stress syndrome. Aquat Mamm 29:9–17CrossRefGoogle Scholar
  16. Brashares JS, Arcese P, Sam MK et al (2004) Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306:1180–1183PubMedCrossRefGoogle Scholar
  17. Brazil (2016) Programa para Aceleração do Crescimento - PAC-II, Eixo Energia (Program for the Acceleration of Growth). In: Minist. Plan. Accessed 30 April 2016
  18. Butler JRA, Bohensky E, Skewes T, Maru Y et al (2015) Drivers of change in the Torres Strait region: status and trends. Report to National Environmental Research Program. Reef & Rainforest Research Centre Limited, Cairns, p 60Google Scholar
  19. Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic response to seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468CrossRefGoogle Scholar
  20. Castello L, Macedo MN (2015) Large-scale degradation of Amazonian freshwater ecosystems. Glob Chang Biol 3:990–1007. doi: 10.1111/gcb.13173 Google Scholar
  21. Church JA, Clark PU, Cazenave A, Gregory JM et al (2013) Sea level change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1137–1216Google Scholar
  22. Christensen JH, Krishna Kumar K, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308Google Scholar
  23. Collier CJ, Waycott M (2014) Temperature extremes reduce seagrass growth and induce mortality. Mar Pollut Bull 83:483–490PubMedCrossRefGoogle Scholar
  24. Costa DP, Williams TM (1999) Marine mammal energetics. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, USA, pp 218–286Google Scholar
  25. Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Friel S, Grace N, Johnson A, Kett M, Lee M, Levy C, Maslin M, McCoy D, McGuire B, Montgomery H, Napier D, Pagel C, Patel J, Oliveira JAP, Redclift N, Rees H, Rogger D, Scotte J, Stephenson J, Twigg J, Wolff J, Patterson C (2009) Managing the health effects of climate change. Lancet 373:1693–1733PubMedCrossRefGoogle Scholar
  26. Crouch J, McNiven IJ, David B et al (2007) Berberass: marine resource specialisation and environmental change in Torres Strait over the past 4000 years. Archaeol Ocean 42:49–64CrossRefGoogle Scholar
  27. Davidson K, Gowan RJ, Harrison PJ et al (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146:206–216CrossRefGoogle Scholar
  28. Delgado PM, Perea NS, Delgado JPM, Garcia CB, Malheiros AF, Davila CRG (2013) Detection of infection with toxoplasma gondii in manatees (Trichechus inunguis) of the Peruvian Amazon. Acta Biolgica Colombiana 18:211–216Google Scholar
  29. Delgado PM, Perea NS, Garcia CB, Davila CRG (2015) Detection of infection with Leptospira spp. in manatees (Trichechus inunguis) of the Peruvian Amazon. Lat Am J Aquat Mamm 10:58–61CrossRefGoogle Scholar
  30. Domning DP (1981) Sea cows and sea grasses. Paleobiology 7:417–420CrossRefGoogle Scholar
  31. Domning DP (1982) Commercial exploitation of manatees Trichechus in Brazil c. 1785–1973. Biol Conserv 22:101–126CrossRefGoogle Scholar
  32. Domning DP (2001) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50CrossRefGoogle Scholar
  33. Doney SC (2006) Plankton in a warmer world. Nature 444:695–696PubMedCrossRefGoogle Scholar
  34. Doney SC, Ruckelshaus M, Duffy JE et al (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–17CrossRefGoogle Scholar
  35. Duce SJ, Parnell KE, Smithers SG, McNamara KE (2010) A synthesis of climate change and coastal science to support adaptation in the communities of the Torres Strait. Synthesis report prepared for the Marine and Tropical Sciences Research Facility (MTSRF). Reef & Rainforest Research Centre Limited, Cairns, p 64Google Scholar
  36. Easterling DR, Evans JL, Groisman PY et al (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–421CrossRefGoogle Scholar
  37. Edwards HH (2013) Potential impacts of climate change on warmwater megafauna: the Florida manatee example (Trichechus manatus latirostris). Clim Chang 121(4):727–738. doi: 10.1007/s10584-013-0921-2 CrossRefGoogle Scholar
  38. Elsner R (1999) Living in water: solutions to physiological problems. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, USA, pp 73–117Google Scholar
  39. El Espectador (2016) Medio Ambiente 12 April 2016 Manatíes en ciénaga de Mahates, en riesgo por falta de alimento. Accessed 6 11 16
  40. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688PubMedCrossRefGoogle Scholar
  41. Errera RM, Yvon-Lewis S, Kessler JD et al (2014) Responses of the dinoflagellate Karenia Brevis to climate change: pCO2 and sea surface temperatures. Harmful Algae 37:110–116CrossRefGoogle Scholar
  42. Fearnside PM (2006) Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu river basin. Environ Manag 38:16–27. doi: 10.1007/s00267-005-0113-6 CrossRefGoogle Scholar
  43. Fearnside PM (2014) Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ Sci Pol 38:164–172. doi: 10.1016/j.envsci.2013.11.004 CrossRefGoogle Scholar
  44. Fearnside PM (2016a) Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: implications for the aluminum industry. World Dev 77:48–65. doi: 10.1016/j.worlddev.2015.08.015 CrossRefGoogle Scholar
  45. Fearnside PM (2016b) Tropical dams: to build or not to build? Science 351(80):456–457. doi: 10.1126/science.351.6272.456-b PubMedCrossRefGoogle Scholar
  46. Ferreira-Ferreira J, Silva TSF, Streher AS et al (2014) Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá sustainable development reserve, Central Amazon floodplain, Brazil. Wetl Ecol Manag 23:41–59. doi: 10.1007/s11273-014-9359-1 CrossRefGoogle Scholar
  47. Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613CrossRefGoogle Scholar
  48. Florida Oceans and Coastal Council (2010) An update of the effects of climate change on Florida’s ocean and coastal resources December2010. Available at: http://seagrantnoaagov/Portals/0/Documents/what_we_do/climate/Florida%20Report%20on%20Climate%20Change%20and%20SLRpdf. Accessed 30 April 2016
  49. Florida Department of Environmental Protection (2014) Water use trends in Florida. Available via Accessed 30 April 2016Google Scholar
  50. Fourqurean JW, Rutten LM (2004) The impacts of hurricane Georges on the soft-bottom, back reef communities: site-and species-specific effects in South Florida seagrass beds. Bull Mar Sci 75:239–257Google Scholar
  51. Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63. doi: 10.1016/j.biocon.2013.12.036 CrossRefGoogle Scholar
  52. Fuentes MMPB, Chambers LE, Chin A, Dann P, Dobbs K, Poloczanska E, Maison K, Turner M, Pressey RL, Marsh H (2014) Adaptive management of marine mega-fauna in a changing climate. Mitig Adapt Strateg Glob Chang. doi: 10.1007/s11027-014-9590 Google Scholar
  53. Fuentes MMPB, Beatty B, Delean S, Grayson J, Lavender S, Logan M, Marsh H (2016) Spatial and temporal variation in the effects of climatic variables on dugong calf production. PLoS One, PONE-D-15-52097R1
  54. Gallivan GJ, Best RC, Kanwisher JW (1983) Temperature regulation in the Amazonian manatee Trichechus inunguis. Physiol Zool 56:255–262CrossRefGoogle Scholar
  55. Gaye CB, Diaw M, Malou R (2013) Assessing the impacts of climate change on water resources of a west African trans-boundary river basin and its environmental consequences (Senegal River basin). Sci Cold Arid Reg 5:0140–0156CrossRefGoogle Scholar
  56. Geophysical Fluid Dynamics Laboratory/NOAA (2015) Global warming and hurricanes. Accessed 30 April 2016.
  57. Gessner BD, Middaugh JP (1995) Paralytic shell fish poisoning in Alaska: a 20-year retrospective analysis. Am J Epidemiol 141:766–770PubMedCrossRefGoogle Scholar
  58. Gilbert PM, Burkholder JM (2006) The complex relationships between increasing fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, New York, pp 341–354CrossRefGoogle Scholar
  59. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479PubMedCrossRefGoogle Scholar
  60. Greening H, Doering P, Corbett C (2006) Hurricane impacts on coastal ecosystems. Estuar Coasts 29:877–879CrossRefGoogle Scholar
  61. Guterres-Pazin MG, Marmontel M, Rosas FCW, Pazin VFV, Venticinque EM (2014) Feeding ecology of the Amazonian manatee (Trichechus inunguis) in the Mamirauá and Amanã sustainable development reserves. Braz Aqua Mammal 40:139–149. doi: 10.1578/AM.40.2.2014.139 CrossRefGoogle Scholar
  62. Haddon AC (1912) Reports of the Cambridge anthropological expedition to Torres Strait. The University Press, CambridgeGoogle Scholar
  63. Hallegraeff GM (2010) Ocean climate change, phytoplankton community response and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235CrossRefGoogle Scholar
  64. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952PubMedCrossRefGoogle Scholar
  65. Hamilton SK (2010) Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657:19–35. doi: 10.1007/ S10750-009-0086-1 CrossRefGoogle Scholar
  66. Heinsohn GE, Spain AV (1974) Effects of a tropical cyclone on littoral and sub littoral biotic communities and on a population of dugongs (Dugong dugon [Müller]). Biol Conserv 6:143–152CrossRefGoogle Scholar
  67. Heisler J, Gilbert P, Burkholder J et al (2008) Eutrophication and harmful algal blooms: scientific consensus. Harmful Algae 8:3–13CrossRefGoogle Scholar
  68. Horgan P, Booth D, Nichols C, Lanyon JM (2014) Insulative capacity of the integument of the dugong (Dugong dugon): thermal conductivity, conductance and resistance measured by in vitro heat flux. Mar Biol 161:1395–1407. doi: 10.1007/s00227-014-2428-4 CrossRefGoogle Scholar
  69. Irvine AB (1983) Manatee metabolism and its influence on distribution in Florida. Biol Conserv 25:315–334CrossRefGoogle Scholar
  70. Junk WJ, Piedade MTF, Schöngart J et al (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetl Ecol Manag 20:461–475. doi: 10.1007/s11273-012-9268-0 CrossRefGoogle Scholar
  71. Johannes RE, Macfarlane JW (1991) Traditional fishing in the Torres Strait islands. CSIRO, HobartGoogle Scholar
  72. IPCC (2014) Climate change 2014: synthesis report contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  73. Keith Diagne L (2015) Trichechus senegalensis. In: The IUCN Red List of Threatened Species 2015: e.T22104A81904980. Accessed 15 April 2016
  74. Killeen TJ, Solórzano LA (2008) Conservation strategies to mitigate impacts from climate change in Amazonia. Philos Trans R Soc B 363:1881–1888CrossRefGoogle Scholar
  75. Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132. doi: 10.1111/j.1365-2486.2012.02791.x PubMedCrossRefGoogle Scholar
  76. Laist DW, Reynolds JE III (2005) Florida manatees, warm-water refuges, and the uncertain future. Coast Manag 33:279–295CrossRefGoogle Scholar
  77. Landsberg JH, Steidinger KA (1998) A historical review of Gymnodinium breve red tide implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Proceedings of the 8th international conference on harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 97–100Google Scholar
  78. Langerwisch F, Rost S, Gerten D, Poulter B, Rammig A, Cramer W (2013) Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol Earth Syst Sci 17:2247–2262CrossRefGoogle Scholar
  79. Langtimm CA, Beck CA (2006) Lower survival probabilities for adult Florida manatees in years with intense coastal storms. Ecol Appl 13:257–268CrossRefGoogle Scholar
  80. Lanyon JM, Newgrain K, Alli TSS (2006) Estimation of water turnover rate in captive dugongs (Dugong dugon). Aquat Mamm 32:103–108CrossRefGoogle Scholar
  81. Lau CL, Smythe LD, Craig SB, Weinstein P (2010) Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg 104:631–638PubMedCrossRefGoogle Scholar
  82. Lawler IR, Parra G, Noad M (2007) Vulnerability of marine mammals in the great barrier reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the great barrier Reef, a vulnerability assessment. Australia, Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, pp 498–513Google Scholar
  83. Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ (2014) Quantifying and modelling the carbon sequestration capacity of seagrass meadows – a critical assessment. Mar Pollut Bull 83:430–439PubMedCrossRefGoogle Scholar
  84. Mallin MA, Corbett CA (2006) How hurricane attributes determine the extent of environmental effects: multiple hurricanes and different coastal systems. Estuar Coasts 29:1046–1061CrossRefGoogle Scholar
  85. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi: 10.1029/2011GL047436 CrossRefGoogle Scholar
  86. Marsh H (1989) Mass stranding of dugongs by a tropical cyclone. Mar Mamm Sci 5:75–84CrossRefGoogle Scholar
  87. Marsh H, Kwan D (2008) Temporal variability in the life history and reproductive biology of female dugongs in Torres Strait: the likely role of sea grass dieback. Cont Shelf Res 28:2152–2159CrossRefGoogle Scholar
  88. Marsh H, O'Shea TJ, Reynolds JE III (2011) Ecology and conservation of the Sirenia: dugongs and manatees. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  89. Marsh H, Grayson J, Grech A et al (2015) A re-evaluation of the sustainability of an indigenous marine mammal harvest using several lines of evidence. Biol Conserv 192:324–330CrossRefGoogle Scholar
  90. Mathews PD, da Silva VMF, Rosas FCW, d'Affonseca Neto JA, Lazzarini SM, Ribeiro DC, Dubey JP, Vasconcellos SA, Gennari SM (2012) Occurrence of antibodies to Toxoplasma gondii and Lepstospira spp. in manatees (Trichechus inunguis) of the Brazilian Amazon. J Zoo Wildl Med 43:85–88PubMedCrossRefGoogle Scholar
  91. Meager JJ, Limpus C (2014) Mortality of inshore marine mammals in eastern Australia is predicted by freshwater discharge and air temperature. PLoS One 9(4):e94849. doi: 10.1371/journal.pone.0094849 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Moore SK, Trainer VL, Mantua NJ et al (2008) Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ Health 7:S4. doi: 10.1186/1476-069X-7-S2-S PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nietschmann B, Nietschmann J (1981) Good dugong, bad dugong: bad turtle, good turtle. Natural History Magazine 90, New YorkGoogle Scholar
  94. Omot N (2012) Food security in Papua New Guinea. AARES 56th Annual Conference – Fremantle, Western Australia, February 07–10, pp 17Google Scholar
  95. Owen HC, Flint M, Limpus CJ, Palmieri C, Mills PC (2013) Evidence of sirenian cold stress syndrome in dugongs Dugong dugon from Southeast Queensland, Australia. Dis Aquat Org 103:1–7. doi: 10.3354/dao02568 PubMedCrossRefGoogle Scholar
  96. Parris A, Bromirski P, Burkett V et al. (2012) Global sea level rise scenarios for the United States National Climate Assessment. NOAA. Available via Accessed 30 April 2016
  97. Poloczanska ES, Babcock RC, Butler A et al (2007) Climate change and Australian marine life. Oceanogr Mar Biol Annu Rev 45:407–478Google Scholar
  98. Powell JA (1996) The distribution and biology of the west African manatee (Trichechus senegalensis, link 1795). United Nations Environmental Program, Regional Seas Programme, Ocean and Coastal Areas, Nairobi, KenyaGoogle Scholar
  99. Prospero JM, Lamb PJ (2003) African drought and dust transport to Caribbean: climate change implications. Science 302:1024–1027PubMedCrossRefGoogle Scholar
  100. Rahmstorf S (2010) A new view on sea level rise. Nat Rep Clim Chan 1004:44–45. doi: 10.1038/climate.2010.2 CrossRefGoogle Scholar
  101. Ralph PJ (1998) Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Mar Ecol Prog Ser 171:123–130CrossRefGoogle Scholar
  102. Rowcliffe JM, Milner-Gulland EJ, Cowlishaw G (2005) Do bushmeat consumers have other fish to fry? TREE 20:274–276PubMedGoogle Scholar
  103. Runge MC, Sanders-Reed CA, Langtimm CA et al (2007) A quantitative threats analysis for the Florida manatee (Trichechus manatus latirostris). Available at U.S. Geological Survey Accessed 30 April 2016
  104. Scavia D, Field JC, Boesch DF et al (2002) Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25:149–164CrossRefGoogle Scholar
  105. Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406PubMedCrossRefGoogle Scholar
  106. SFWMD (Southwest Florida Water Management District) (2001) Hydrology and water quality of select springs in the Southwest Florida Water Management District. Available at Friends of mineral springs Accessed 30 April 2016Google Scholar
  107. Sheppard J, Preen AR, Marsh H, Lawler IR, Whiting S, Jones RE (2006) Movement heterogeneity of dugongs, Dugong dugon Müller over large spatial scales. J Exp Mar Biol Ecol 334:64–83CrossRefGoogle Scholar
  108. Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63:169–196CrossRefGoogle Scholar
  109. Sorribas MV, Paiva RCD, Melack JM et al (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Chang. doi: 10.1007/s10584-016-1640-2 Google Scholar
  110. Steward JS, Virnstein RW, Lasi MA et al (2006) The impacts of the 2004 hurricanes on the hydrology, water quality and seagrass in the Central Indian River lagoon, Florida. Estuar Coasts 29:954–965CrossRefGoogle Scholar
  111. Stoeckl N, Larson TM, Hicks C, Pascoe S, Marsh H (in press) Socioeconomic impacts of changes to marine fisheries and aquaculture that are brought about through climate change. In: Phillips B (ed) The impact of climate change on marine fisheries and aquaculture and their adaptations. Wiley, USAGoogle Scholar
  112. Thornback J, Jenkins M (1982) The IUCN mammal red data book part 1: threatened mammalian taxa of the Americas and the Australasian zoogeographic region (excluding Cetacea). The International Union for Conservation of Nature (IUCN) and United Nations Environment Program (UNEP), Gland, SwitzerlandGoogle Scholar
  113. UN Atlas (2010) UN Atlas: 44 percent of us live in coastal areas Accessed April 30 2016Google Scholar
  114. Wade M, Mignot J, Lazar A, Gaye AT, Carré M (2015) On the spatial coherence of rainfall over the Saloum delta (Senegal) from seasonal to decadal time scales. Front Earth Sci 3:30. doi: 10.3389/feart.2015.00030 CrossRefGoogle Scholar
  115. Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophy Res Oceans 106:11,597–11,612CrossRefGoogle Scholar
  116. Walsh JE, Phillips AS, Portis DH, Chapman WL (2001) Extreme cold outbreaks in the United States and Europe, 1948–99. J Clim 14:2642–2658CrossRefGoogle Scholar
  117. Walsh CJ, Butawan M, Yordy J et al (2015) Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation response, inflammation, and oxidative stress. Aquat Toxicol 161:73–84PubMedCrossRefGoogle Scholar
  118. Watson RT, Zinyowera MC, Moss RH (1996) Climate change 1995: impacts, adaptations, and mitigation of climate change. Scientific-technical analysis. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  119. Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377–12381PubMedPubMedCentralCrossRefGoogle Scholar
  120. Webster PJ, Holland GJ, Curry JA et al (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846PubMedCrossRefGoogle Scholar
  121. Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93PubMedPubMedCentralCrossRefGoogle Scholar
  122. Winemiller KO, McIntyre PB, Castello L et al (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351(80):128–129. doi: 10.1126/science.aac7082 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Helene Marsh
    • 1
    Email author
  • Eduardo Moraes Arraut
    • 2
    • 3
  • Lucy Keith Diagne
    • 4
  • Holly Edwards
    • 5
  • Miriam Marmontel
    • 6
  1. 1.College of Science and Engineering, James Cook UniversityTownsvilleAustralia
  2. 2.Remote Sensing Division, National Institute for Space ResearchSão José dos CamposBrazil
  3. 3.Wildlife Conservation Research Unit, The Recanati-Kaplan CentreOxford UniversityTubneyUK
  4. 4.African Aquatic Conservation FundChilmarkUSA
  5. 5.Marine Mammal Department, Florida Fish and Wildlife Conservation CommissionSt PetersburgUSA
  6. 6.Instituto de Desenvolvimento Sustentável MamirauáTeféBrazil

Personalised recommendations