Skip to main content

Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks

  • Conference paper
  • First Online:
Deep Learning and Data Labeling for Medical Applications (DLMIA 2016, LABELS 2016)

Abstract

Retinopathy of Prematurity (ROP) is an ocular disease observed in premature babies, considered one of the largest preventable causes of childhood blindness. Problematically, the visual indicators of ROP are not well understood and neonatal fundus images are usually of poor quality and resolution. We investigate two ways to aid clinicians in ROP detection using convolutional neural networks (CNN): (1) We fine-tune a pretrained GoogLeNet as a ROP detector and with small modifications also return an approximate Bayesian posterior over disease presence. To the best of our knowledge, this is the first completely automated ROP detection system. (2) To further aid grading, we train a second CNN to return novel feature map visualizations of pathologies, learned directly from the data. These feature maps highlight discriminative information, which we believe may be used by clinicians with our classifier to aid in screening.

The original version of this chapter was revised: Acknowledgement section has been updated. The erratum to this chapter is available at DOI: 10.1007/978-3-319-46976-8_29

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-46976-8_29

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/c/diabetic-retinopathy-detection.

  2. 2.

    Neonatal fundus imaging quality has not improved since, only the labels are different.

References

  1. Zin, A., Gole, G.A.: Retinopathy of prematurity-incidence today. Clin. Perinatol. 40(2), 185–200 (2013)

    Article  Google Scholar 

  2. Fleck, B.W., Stenson, B.J.: Retinopathy of prematurity and the oxygen conundrum: lessons learned from recent randomized trials. Clin. Perinatol. 40(2), 229–240 (2013)

    Article  Google Scholar 

  3. Wilkinson, A., Haines, L., Head, K., Fielder, A., et al.: UK retinopathy of prematurity guideline. Eye (London, England) 23(11), 2137 (2009)

    Article  Google Scholar 

  4. Gole, G.A., Ells, A.L., Katz, X., Holmstrom, G., Fielder, A.R., Capone Jr., A., Flynn, J.T., Good, W.G., Holmes, J.M., McNamara, J., et al.: The international classification of retinopathy of prematurity revisited. JAMA Ophthalmol. 123(7), 991–999 (2005)

    Google Scholar 

  5. Saunders, R.A., Bluestein, E.C., Sinatra, R.B., Wilson, M.E., Rust, P.F.: The predictive value of posterior pole vessels in retinopathy of prematurity. J. Pediatr. Ophthalmol. Strabismus 32(2), 82–85 (1995)

    Google Scholar 

  6. Binenbaum, G.: Algorithms for the prediction of retinopathy of prematurity based on postnatal weight gain. Clin. Perinatol. 40(2), 261–270 (2013)

    Article  Google Scholar 

  7. Oloumi, F., Rangayyan, R.M., Ells, A.L.: Quantification of the changes in the openness of the major temporal arcade in retinal fundus images of preterm infants with plus diseaseanalysis of fundus images of infants with plus disease. Invest. Ophthalmol. Vis. Sci. 55(10), 6728–6735 (2014)

    Article  Google Scholar 

  8. Aslam, T., Fleck, B., Patton, N., Trucco, M., Azegrouz, H.: Digital image analysis of plus disease in retinopathy of prematurity. Acta Ophthalmol. 87(4), 368–377 (2009)

    Article  Google Scholar 

  9. Jomier, J., Wallace, D.K., Aylward, S.R.: Quantification of retinopathy of prematurity via vessel segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 620–626. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Wallace, D.K., Zhao, Z., Freedman, S.F.: A pilot study using roptool to quantify plus disease in retinopathy of prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 11(4), 381–387 (2007)

    Article  Google Scholar 

  11. Swanson, C., Cocker, K., Parker, K., Moseley, M., Fielder, A.: Semiautomated computer analysis of vessel growth in preterm infants without and with ROP. Br. J. Ophthalmol. 87(12), 1474–1477 (2003)

    Article  Google Scholar 

  12. Worrall, D.E., Brostow, G.J., Wilson, C.M.: Automated optic disc (OD) localization in the neonatal fundus image. In: ARVO (2016)

    Google Scholar 

  13. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  14. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop. COURSERA: Neural Netw. Mach. Learn. 4, 2 (2012)

    Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. arXiv preprint arXiv:1506.02142 (2015)

  16. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  17. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, p. 130. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 991–999 (2015)

    Google Scholar 

  19. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  20. Gschließer, A., Stifter, E., Neumayer, T., Moser, E., Papp, A., Pircher, N., Dorner, G., Egger, S., Vukojevic, N., Oberacher-Velten, I., et al.: Inter-expert and intra-expert agreement on the diagnosis and treatment of retinopathy of prematurity. Am. J. Ophthalmol. 160(3), 553–560 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr Anna Ells of Alberta Childrens Hospital, Calgary, Canada for the ‘Canada dataset’, and Alistair Fielder and Philip ‘Eddie’ Edwards for insightful conversations. Daniel Worrall is supported by Fight for Sight, registered charity number 1111438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Worrall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Worrall, D.E., Wilson, C.M., Brostow, G.J. (2016). Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics