Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)
CrossRef
Google Scholar
Aroyo, L., Welty, C.: The three sides of crowdtruth. Hum. Comput. 1(1), 31–44 (2014)
CrossRef
Google Scholar
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popović, Z.: Foldit players: predicting protein structures with a multiplayer online game. Nature 446, 756–760 (2010)
CrossRef
Google Scholar
Dumitrache, A., Aroyo, L., Welty, C., Sips, R.J., Levas, A.: Dr. detective: combining gamication techniques and crowdsourcing to create a gold standard in medical text. In: Proceedings of the 1st International Conference on Crowdsourcing the Semantic Web-Volume 1030, pp. 16–31. CEUR-WS. org (2013)
Google Scholar
Fuchs, J., Isenberg, P., Bezerianos, A., Fischer, F., Bertini, E.: The influence of contour on similarity perception of star glyphs. IEEE Trans. Vis. Comput. Graph. 20(12), 2251–2260 (2014)
CrossRef
Google Scholar
Good, B.M., Loguercio, S., Griffith, O.L., Nanis, M., Wu, C., Su, A.I.: The cure: design and evaluation of a crowdsourcing game for gene selection for breast cancer survival prediction. JMIR Serious Games 2(2), e7 (2014). doi:10.2196/games
CrossRef
Google Scholar
Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?-a literature review of empirical studies on gamification. In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 3025–3034. IEEE (2014)
Google Scholar
Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)
MathSciNet
CrossRef
MATH
Google Scholar
Luengo-Oroz, M.A., Arranz, A., Frean, J.: Crowdsourcing malaria parasite quantification: an online game for analyzing images of infected thick blood smears. J. Med. Internet Res. 14(6), e167 (2012)
CrossRef
Google Scholar
Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: ISBI, vol. 9, pp. 1107–1110 (2009)
Google Scholar
Maier-Hein, L., Ross, T., Glocker, B., Bodenstedt, S., Stock, C., Heim, E., Wirkert, S., Kenngott, H., Speidel, S., Maier-Hein, K., et al.: Crowd-algorithm collaboration for large-scale endoscopic image annotation with confidence
Google Scholar
Maier-Hein, L., Kondermann, D., Roß, T., Mersmann, S., Heim, E., Bodenstedt, S., Kenngott, H.G., Sanchez, A., Wagner, M., Preukschas, A., Wekerle, A.L., Helfert, S., März, K., Mehrabi, A., Speidel, S., Stock, C.: Crowdtruth validation: a new paradigm for validating algorithms that rely on image correspondences. Int. J. Comput. Assist. Radiol. Surg. 10(8), 1201–1212 (2015)
CrossRef
Google Scholar
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)
MathSciNet
MATH
Google Scholar
Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F., Larsen, A.B., Vestergaard, J.S., Dahl, A.B., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)
CrossRef
Google Scholar
Wertheimer, M.: Untersuchungen zur lehre von der gestalt. ii. Psychologische Forschung 4(1), 301–350 (1923). http://dx.doi.org/10.1007/BF00410640
CrossRef
Google Scholar
Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning for efficient and robust landmark detection in volumetric data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 565–572. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_69
CrossRef
Google Scholar