Skip to main content

Hierarchical Feature Extraction for Nuclear Morphometry-Based Cancer Diagnosis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10008))

Abstract

Cell and nuclear morphology, as observed from histopathology microscopy images, have long been known as important indicators of disease states. Due to the large amount of data, obtaining expert pathologists annotations at the individual cell level is impractical in many applications, however. Thus the majority of the approaches currently available for automated classification and cancer detection are based on utilizing the patient label for each segmented cell, and patient classification is performed by classifying single morphological exemplars (e.g. cells or subcellular features) in combination with a majority voting procedure. Here we propose a new hierarchical method for classifying sets of nuclei. The method can be interpreted as a type of multiple instance learning (MIL) method in that it embeds data from each patient into a hierarchical feature space. The feature space, and classification boundary, are alternatively optimized utilizing the support vector machine (SVM) cost function. We demonstrate the application of the method in the diagnosis of thyroid lesions and compare to existing MIL methods showing significant improvements in classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zink, D., Fischer, A.H., Nickerson, J.A.: Nuclear structure in cancer cells. Nat. Rev. Cancer 4(9), 677–687 (2004)

    Article  Google Scholar 

  2. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  3. Ozolek, J.A., Tosun, A.B., Wang, W., Chen, C., Kolouri, S., Basu, S., Rohde, G.K.: Accurate diagnosis of thyroid follicular lesions from nuclear morphology using supervised learning. Med. Image Anal. 18(5), 772–780 (2014)

    Article  Google Scholar 

  4. Basu, S., Kolouri, S., Rohde, G.K.: Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry. Proc. Nat. Acad. Sci. 111(9), 3448–3453 (2014)

    Article  Google Scholar 

  5. Daskalakis, A., Kostopoulos, S., Spyridonos, P., Glotsos, D., Ravazoula, P., Kardari, M., Kalatzis, I., Cavouras, D., Nikiforidis, G.: Design of a multi-classifier system for discriminating benign from malignant thyroid nodules using routinely H&E-stained cytological images. Comput. Biol. Med. 38(2), 196–203 (2008)

    Article  Google Scholar 

  6. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: A review current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014)

    Article  Google Scholar 

  7. Loewenstein, W.R., Kanno, Y.: Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 200, 1248–1249 (1966)

    Article  Google Scholar 

  8. Huang, H., Tosun, A.B., Guo, J., Chen, C., Wang, W., Ozolek, J.A., Rohde, G.K.: Cancer diagnosis by nuclear morphometry using spatial information. Pattern Recogn. Lett. 42, 115–121 (2014)

    Article  Google Scholar 

  9. Wang, W., Ozolek, J.A., Rohde, G.K.: Detection and classification of thyroid follicular lesions based on nuclear structure from histopathology images. Cytometry Part A 77(5), 485–494 (2010)

    Google Scholar 

  10. Weinberg, R.: The Biology of Cancer. Garland Science, New York (2013)

    Google Scholar 

  11. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: NIPS, pp. 561–568 (2002)

    Google Scholar 

  13. Zhang, Q., Goldman, S.A.: EM-DD: An improved multiple-instance learning technique. In: NIPS, pp. 1073–1080 (2001)

    Google Scholar 

  14. Zhang, C., Platt, J.C., Viola, P.A.: Multiple instance boosting for object detection. In: NIPS, pp. 1417–1424 (2005)

    Google Scholar 

  15. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-iid samples. In: ICML, pp. 1249–1256 (2009)

    Google Scholar 

  16. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach. Learn. Res. 5(Aug), 913–939 (2004)

    MathSciNet  Google Scholar 

  17. Chen, L., Tong, T., Ho, C.P., Patel, R., Cohen, D., Dawson, A.C., Halse, O., Geraghty, O., Rinne, P.E.M., White, C.J., Nakornchai, T., Bentley, P., Rueckert, D.: Identification of cerebral small vessel disease using multiple instance learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 523–530. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_64

    Chapter  Google Scholar 

  18. Xu, Y., Zhu, J.Y., Eric, I., Chang, C., Lai, M., Tu, Z.: Weakly supervised histopathology cancer image segmentation and classification. Med. Image Anal. 18(3), 591–604 (2014)

    Article  Google Scholar 

  19. Kandemir, M., Hamprecht, F.A.: Computer-aided diagnosis from weak supervision: a benchmarking study. Comput. Med. Imaging Graph. 42, 44–50 (2015)

    Article  Google Scholar 

  20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  21. Chen, C., Wang, W., Ozolek, J.A., Rohde, G.K.: A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching. Cytometry Part A 83(5), 495–507 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by the National Institutes of Health, grants CA 188938 and GM 090033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Liu, C., Huang, Y., Han, L., Ozolek, J.A., Rohde, G.K. (2016). Hierarchical Feature Extraction for Nuclear Morphometry-Based Cancer Diagnosis. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics