Skip to main content

Present and Future Water Requirements for Crops

  • Chapter
  • First Online:
Future of Food Gaps in Egypt

Part of the book series: SpringerBriefs in Agriculture ((BRIEFSAGRO))

Abstract

In this chapter, ETo values were calculated for three studied governorates using Penman-Monteith equation, and then water requirements for the studied crops were calculated. Furthermore, the effect of climate change on ETo values were calculated after comparing between RCPs scenarios developed from four AR5 global models and its four RCPs scenarios with measured weather data for a 30-year period, where goodness of fit test was applied. The analysis indicated that RCP6.0 scenario from CCSM4 model has the highest agreement between measured and projected weather data. Thus, the data from this scenario was used to develop more accurate values for water requirements for the three crops grown in the three main regions in Egypt in 2029/30 season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtew, W., & Melesse, A. (2013). Climate change and evapotranspiration In Evaporation and evapotranspiration: Measurements and estimations. Dordrecht: Springer Science Business Media Dordrecht. doi: 10.1007/978-94-007-4737-113

  • Allen, R. G., Jensen, M. E., Wright, J. L., & Burman, R. D. (1989). Operational estimate of reference evapotranspiration. Agronomy Journal, 81, 650–662.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guideline for computing crop water requirements. FAO, 56, D05109.

    Google Scholar 

  • Clarke, L. E., Edmonds, J. A., Jacoby, H. D., Pitcher, H., Reilly, J. M., & Richels, R. (2007). Sub-report 2.1a of synthesis and assessment product 2.1. Washington, DC: Climate Change Science Program and the Subcommittee on Global Change Research.

    Google Scholar 

  • EEAA. (2010). Egypt second national communication under the United Nations framework convention on climate change. Cairo: Egypt Environmental Affairs Agency.

    Google Scholar 

  • El-Fandy, M. G. (1948). Baroclinic low of Sybrus. Quarterly Journal of the Royal Meteorological Society, 72, 291–306.

    Article  Google Scholar 

  • El-Massah, S., & Omran, G. (2014). Would climate change affect the imports of cereals? The case of Egypt”, handbook of climate change adaptation. Berlin: Springer.

    Google Scholar 

  • Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2006). Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Multi-gas mitigation and climate policy. The Energy Journal Special, 27, 343–353.

    Google Scholar 

  • Hasanean, H. M., & Abdel Basset, H. (2006). Variability of summer temperature over Egypt. International Journal of Climatology, 26, 1619–1634.

    Article  Google Scholar 

  • Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, M., & Kainuma, M. (2008). Global GHG emissions scenarios under GHG concentration stabilization targets. Journal of Global Environmental Engineering, 13, 97–108.

    Google Scholar 

  • IPCC. (2013). Summary for policymakers. In T. F. Stocker, G. K. Qin, M. Plattner, S. Tignor, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change. The physical science basis (Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Jamieson, P. D., Porter, J. R., Goudriaan, J., Ritchie, J. T., Keulen, H., & Stol, W. (1998). A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research, 55, 23–44.

    Article  Google Scholar 

  • Khalil, A. A. (2013). Effect of climate change on evapotranspiration in Egypt. Researcher, 5(1), 7–12.

    Google Scholar 

  • Monteith, J. L. (1965). Evaporation and environment. In G. E. Fogg (Ed.), Symposium of the society for experimental biology: The state and movement of water in living organisms (Vol. 19, pp. 205–234). New York: Academic Press, Inc.

    Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.

    Google Scholar 

  • Morsy, M. (2015). Use of regional climate and crop simulation models to predict wheat and maize productivity and their adaptation under climate change. PhD thesis, Faculty of Science, Al-Azhar University.

    Google Scholar 

  • Morsy, M., Sayad, T. A., & Ouda, S. (2015). Potential evapotranspiration under present and future climate. In Management of climate induced drought and water scarcity in Egypt: Unconventional solutions. Cham: Springer Publishing House.

    Google Scholar 

  • Ouda, S., Abd El-Latif, K., & Khalil, F. (2016). Water requirements for major crops. In Major crops and water scarcity in Egypt. Cham: Springer Publishing House.

    Chapter  Google Scholar 

  • Rao, K. P. C., Ndegwa, W. G., Kizito, K., & Oyoo, A. (2011). Climate variability and change: Farmer perceptions and understanding of intra-seasonal variability in rainfall and associated risk in semi-arid Kenya. Experimental Agriculture, 47, 267–291.

    Article  Google Scholar 

  • Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socioeconomic and environmental development under climate stabilization Greenhouse Gases-Integrated Assessment. Special Issue of Technological Forecasting and Social Change, 74(7), 887–935.

    Article  Google Scholar 

  • Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of American Water Resources Association, 37(5), 1169–1188.

    Article  CAS  Google Scholar 

  • Sayad, T. A., Ouda, S., Morsy, M., & El Hussieny, F. (2015). Robust statistical procedure to determine suitable scenario of some CMIP5 models for four locations in Egypt. Global Journal of Advanced Research, 2(6), 1009–1019.

    Google Scholar 

  • Shahid, S. (2011). Impact of climate change on irrigation water demand of dry season Boro Rice in Northwest Bangladesh. Climatic Change, 105, 433–453. http://dx.doi.org/10.1007/s10584-010-9895-5

  • Smith, S. J., & Wigley, T. M. L. (2006). Multi-gas Forcing stabilisation with the MiniCAM. The Energy Journal Special, 3, 373–392.

    Google Scholar 

  • Snyder, R. L., Orang, M., Bali, K., & Eching, S. (2004). Basic irrigation scheduling (BIS). http://www.waterplan.water.ca.gov/landwateruse/wateruse/Ag/CUP/Californi/Climate_Data_010804.xls

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., & Miller, H. (Eds.). (2007). Climate change 2007: The physical science basis (Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, p. 996). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Van Liew, M. W., Arnold, J. G., & Garbrecht, J. D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the American Society of Agricultural Engineers, 46(6), 1539–1551.

    Article  Google Scholar 

  • Van Vuuren, D. P., Eickhout, B., Lucas, P. L., & den Elzen, M. G. J. (2006). Long-term multi-gas scenarios to stabiliseradiative forcing – Exploring costs and benefits within an integrated assessment framework. Multi-gas mitigation and climate policy. The Energy Journal Special, 27, 201–233.

    Google Scholar 

  • Van Vuuren, D. P., den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., Van Ruijven, B., Wonink, S., & Van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81, 119–159.

    Article  CAS  Google Scholar 

  • Wayne, G. P. (2013). The Beginner’s guide to representative concentration pathways. Skeptical Science, Version 1.0. http://www.skepticalscience.com/d°Cs/RCP_ Guide.pdf

  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194.

    Google Scholar 

  • Wise, M. A., Calvin, K. V., Thomson, A. M., Clarke, L. E., Bond-Lamberty, B., Sands, R. D., Smith, S. J., Janetos, A. C., & Edmonds, J. A. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  • Zohry, A. A., & Ouda, S. (2016a). Crops intensification to face climate induced water scarcity in Nile delta region. In Management of climate induced drought and water scarcity in Egypt: Unconventional solutions. Cham: Springer Publishing House.

    Google Scholar 

  • Zohry, A. A., & Ouda, S. (2016b). Upper Egypt: Management of high water consumption crops by intensification. In Management of climate induced drought and water scarcity in Egypt: Unconventional solutions. Cham: Springer Publishing House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Morsy .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morsy, M., Sayad, T., Ouda, S.A.H. (2017). Present and Future Water Requirements for Crops. In: Future of Food Gaps in Egypt. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-46942-3_2

Download citation

Publish with us

Policies and ethics