An Index-Based Method for Efficient Maximizing Range Sum Queries in Road Network

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9877)

Abstract

Given a set of positive weighted points, the Maximizing Range Sum (maxRS) problem finds the placement of a query region r of given size such that the weight sum of points covered by r is maximized. This problem has long been studied since its wide application in spatial data mining, facility locating, and clustering problems. However, most of the existing work focus on Euclidean space, which is not applicable in many real-life cases. For example, in location-based services, the spatial data points can only be accessed by following certain underlying (road) network, rather than straight-line access. Thus in this paper, we study the maxRS problem with road network constraint, and propose an index-based method that solves the online queries highly efficiently.

Keywords

Maximizing range sum Road network Query processing 

References

  1. 1.
    Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Math. Appl. 29(8), 45–61 (1995)MathSciNetMATHGoogle Scholar
  3. 3.
    Choi, D.W., Chung, C.W., Tao, Y.: A scalable algorithm for maximizing range sum in spatial databases. Proc. VLDB Endow. 5(11), 1088–1099 (2012)CrossRefGoogle Scholar
  4. 4.
    Tao, Y., Hu, X., Choi, D.W., Chung, C.W.: Approximate MaxRS in spatial databases. PVLDB 6(13), 1546–1557 (2013)Google Scholar
  5. 5.
    Choi, D.W., Chung, C.W., Tao, Y.: Maximizing range sum in external memory. ACM Trans. Database Syst. 39(3), 21: 1–21: 44 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mukherjee, M., Chakraborty, K.: A polynomial time optimization algorithm for a rectilinear partitioning problem with applications in VLSI design automation. Inf. Process. Lett. 83, 41–48 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Goodrich, M.T., Tsay, J.-J., Vengroff, D.E., Vitter, J.S.: External-memory computational geometry (preliminary version). In: FOCS, pp. 714–723 (1993)Google Scholar
  8. 8.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, p. 278. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Tiwari, S., Kaushik, H.: Extracting region of interest (roi) details using lbs infrastructure and web databases. In: MDM 2012, pp. 376–379 (2012)Google Scholar
  10. 10.
    Du, Y., Zhang, D., Xia, T.: The optimal-location query. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 163–180. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Zhang, D., Du, Y., Xia, T., Tao, Y.: Progressive computation of the min-dist optimal-location query. In: VLDB (2006)Google Scholar
  12. 12.
    Xiao, X., Yao, B., Li, F.: Optimal location queries in road network databases. In: ICDE (2011)Google Scholar
  13. 13.
    Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms and Case Studies, 1st edn. Physica-Verlag, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Phan, T.K., Jung, H.R., Kim, U.M.: An efficient algorithm for maximizing range sum queries in a road network. Sci. World J. 2014 (2014). Article ID 541602Google Scholar
  15. 15.
  16. 16.
    Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: SIGMOD (2004)Google Scholar
  18. 18.
    Chazelle, B.M., Lee, D.T.: On a circle placement problem. Computing 36, 1–16 (1986)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 886–894 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.University of New South WalesSydneyAustralia

Personalised recommendations