Skip to main content

What Should They Learn? – A Short Comparison Between Different Areas of Competence and Accreditation Boards’ Criteria for Engineering Education

  • Chapter
  • First Online:
Engineering Education 4.0
  • 1772 Accesses

Abstract

The question “What should engineering students learn for being successful engineers?” is and always was a driver for intense discussions about curriculum development in engineering education. Contributions to this question differ between various types of education institutions and organizations, various fields of specialization, and even various countries. Such differences make it necessary, that a framework, which describes the students’ intended learning outcomes in engineering education programs, must be designed openly to represent engineering education in general and in the same way accurately enough to answer the question above. Therefore this work-in-progress-paper firstly discusses a general model of areas of competence, secondly looks at different accreditation boards’ criteria for engineering education, thirdly combines the boards’ criteria with the general areas of competences and fourthly derives conclusions for engineering education in laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.H. Minks, Kompetenzen für den arbeitsmarkt:: Was wird vermittelt, was vermisst? In: Bachelor- und Master-Ingenieure:. Welche Kompetenzen verlangt der Arbeitsmarkt, ed. by Stifterverband für die Deutsche Wissenschaft, Positionen, Essen, 2004, pp. 32–40

    Google Scholar 

  2. F.S. [1] Becker, Herausforderungen für Elektroingenieure/innen: Entwicklungen im Arbeitsumfeld, Erwartungen von Personalverantwortlichen: Tipps für Berufsstart und Karriere. Frankfurt am Main, 2012

    Google Scholar 

  3. G.P. Bunk, Kompetenzvermittlung in der beruflichen aus- und weiterbildung in deutschland. Europäische Zeitschrift Berufsbildung (1), 1994, pp. 9–15

    Google Scholar 

  4. J. Erpenbeck, L. Rosenstiel, Handbuch Kompetenzmessung: Erkennen, verstehen und bewerten von Kompetenzen in der betrieblichen, pädagogischen und psychologischen Praxis, 2nd edn. Schäffer-Poeschel, Stuttgart, 2007

    Google Scholar 

  5. M. Bernien, Anforderungen an eine qualitative und quantitative darstellung der beruflichen kompetenzentwicklung. In: Berufliche Weiterbildung in der Transformation - Fakten und Visionen, 1997, vol. Kompetenzentwicklung, Waxmann, Münster, 1997, pp. 17–84

    Google Scholar 

  6. J. Erpenbeck, W. Heyse, Die Kompetenzbiographien. Strategien der Kompetenzentwicklung. Münster, 1999

    Google Scholar 

  7. J. Wildt, Kompetenzen als ”learning outcome. Journal Hochschuldidaktik 17 (1), 2006, pp. 6–9

    Google Scholar 

  8. Criteria for accrediting engineering programs: Effective for reviews during the 2013-2014 accreditation cycle, 2012

    Google Scholar 

  9. P. Blumenthal, U. Grothus, Developing global competence in engineering students:: U.s. and german approaches. The Online Journal for Global Engineering Education 3 (2), 2008

    Google Scholar 

  10. G. Heitmann, Elemente einer qualitativ hochwertigen und vergleichbaren europäischen ingenieurausbildung. In: Bachelor- und Master-Ingenieure:. Welche Kompetenzen verlangt der Arbeitsmarkt, ed. by Stifterverband für die Deutsche Wissenschaft, Positionen, Essen, 2004, pp. 18–23

    Google Scholar 

  11. S. Moore, D. May, K. Wold, Developing cultural competency in engineering through transnational distance learning. In: Transnational Distance Learning and Building New Markets for Universities, ed. by R. Hogan, IGI Global, Hershey (PA/USA), 2012

    Google Scholar 

  12. Allgemeine kriterien für die akkreditierung von studiengängen: Ingenieurwissenschaften, informatik, architektur, naturwissenschaften, mathematik und ihre kombinationen mit anderen fachgebieten, 2012

    Google Scholar 

  13. Fachspezifisch ergänzende hinweise zur akkreditierung von bachelor- und masterstudiengängen des maschinenbaus, der verfahrenstechnik und des chemieingenieurwesens, 2011

    Google Scholar 

  14. Eur-ace framework standards for the accreditation of engineering programmes, 2008. URL http://www.enaee.eu/eur-ace-system/eur-ace-framework-standards

  15. L.D. Feisel, G.D. Peterson, A colloquy on learning objectives for engineering education laboratories. In: Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition Copyright. 2002

    Google Scholar 

  16. H.G. Bruchmüller, A. Haug, Labordidaktik für Hochschulen – Eine Einführung zum Praxisorientierten Projekt-Labor, Schriftenreihe report, vol. 40. Leuchtturm-Verlag, 2001

    Google Scholar 

  17. A. Haug, Labordidaktik in der Ingenieurausbildung. VDE-Verlag GmbH, Berlin, 1980

    Google Scholar 

  18. URL http://www.acatech.de/?id=1841

  19. C. Terkowsky, C. Pleul, I. Jahnke, A.E. Tekkaya, Tele-operated laboratories for production engineering education - platform for e-learning and telemetric experimentation (petex). International Journal of Online Engineering (iJOE). Special Issue EDUCON 2011 7 (Issue S1), 2011, pp. 37–43

    Google Scholar 

  20. C. Terkowsky, T. Haertel, E. Bielski, D. May, Creativity@school: Mobile learning environments involving remote labs ande-portfolios. a conceptual framework to foster the inquiring mind in secondary stem education. In: IT Innovative Practices inSecondary Schools: Remote Experiments, ed. by J.C. Zubía, O. Dziabenko, Bilbao, Spain, 2013, pp. 255–280

    Google Scholar 

  21. C. Terkowsky, I. Jahnke, C. Pleul, D. May, T. Jungmann, A.E. Tekkaya, Petex@work. designing cscl@work for online engineering education. In: Computer-Supported Collaborative Learning at the Workplace - CSCL@Work, Computer-Supported Collaborative Learning Series, vol. 14, ed. by S.P. Goggins, I. Jahnke, V. Wulf, Springer, 2013, pp. 269–292

    Google Scholar 

  22. C. Terkowsky, T. Haertel, E. Bielski, D. May, Bringing the inquiring mind back into the labs. a conceptual framework to foster the creative attitude in higher engineering education. In: Proceedings of EDUCON2014 – IEEE Global Engineering Education Conference. 2014

    Google Scholar 

  23. Y. Chang, D. Atkinson, E.D. Hirleman, International research and engineering education: Impacts and best practices. Online J. Global Eng. Educ 4 (2), 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

May, D., Terkowsky, C. (2016). What Should They Learn? – A Short Comparison Between Different Areas of Competence and Accreditation Boards’ Criteria for Engineering Education. In: Frerich, S., et al. Engineering Education 4.0. Springer, Cham. https://doi.org/10.1007/978-3-319-46916-4_74

Download citation

Publish with us

Policies and ethics