Abstract
In this paper, we present a hybrid approach to automatic assembly planning, where all computational intensive tasks are executed once prior to the actual assembly by an Offline Planner component. The result serves as basis of decision-making for the Online Planner component, which adapts planning to the actual situation and unforeseen events. Due to the separation into offline and online planner, this approach allows for detailed planning as well as fast computation during the assembly, therefore enabling appropriate assembly duration even in nondeterministic environments. We present simulation results of the planner and detail the resulting planner’s behavior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
C. Brecher, F. Klocke, G. Schuh, R. Schmitt, eds., Excellence in Production. Apprimus Verlag, Aachen, Germany, 2007
C. Brecher, T. Kempf, W. Herfs, Cognitive control technology for a self-optimizing robot based assembly cell. In: Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. America Society of Mechanical Engineers, U.S., 2008, pp. 1423–1431
B. Kausch, C.M. Schlick, W. Kabuß, B. Odenthal, M.P. Mayer, M. Faber, Simulation of human cognition in self-optimizing assembly systems. In: Proceedings of 17th World Congress on Ergonomics IEA 2009. Beijing, China, 2009
J. Hoffmann, FF: the fast-forward planning system. The AI Magazine, 2001
J. Hoffmann, R. Brafman, Contingent planning via heuristic forward search with implicit belief states. In: In Proceedings of ICAPS’05. AAAI, 2005, pp. 71–80
C. Castellini, E. Giunchiglia, A. Tacchella, O. Tachella, Improvements to SAT-based conformant planning. In: Proc. of 6th European Conference on Planning. 2001
S. Kaufman, R. Wilson, R. Jones, T. Calton, A. Ames, Ldrd final report: Automated planning and programming of assembly of fully 3d mechanisms. Technical Report SAND96-0433, Sandia National Laboratories, 1996
U. Thomas, Automatisierte Programmierung von Robotern für Montageaufgaben, Fortschritte in der Robotik, vol. 13. Shaker Verlag, Aachen
Tecnomatix, 2011. URL http://www.plm.automation.siemens.com/en_us/products/tecnomatix/index.shtml
M. Zäh, M. Wiesbeck, A model for adaptively generating assembly instructions using state-based graphs. In: Manufacturing Systems and Technologies for the New Frontier, Springer, London, 2008
F. Röhrdanz, H. Mosemann, F. Wahl, HighLAP: a high level system for generating, representing, and evaluating assembly sequences. 1996, pp. 134–141
L. Homem de Mello, A. Sanderson, AND/OR graph representation of assembly plans. In: Proceedings of 1986 AAAI National Conference on Artificial Intelligence. 1986, pp. 1113–1119
D. Ewert, D. Schilberg, S. Jeschke, Selfoptimization in adaptive assembly planning. In: Proceedings of the 26th International Conference on CAD/CAM Robotics and Factories of the Future. 2011
P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4 (2), 1968, pp. 100–107
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Ewert, D., Schilberg, D., Jeschke, S. (2016). Selfoptimized Assembly Planning for a ROS Based Robot Cell. In: Frerich, S., et al. Engineering Education 4.0. Springer, Cham. https://doi.org/10.1007/978-3-319-46916-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-46916-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46915-7
Online ISBN: 978-3-319-46916-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)