Skip to main content

Epidemiology, Molecular Biology, and Pathogenic Mechanisms of Ehrlichia Infections

  • Chapter
  • First Online:
Rickettsiales

Abstract

Ehrlichia are tick-borne, obligately intracellular Gram negative bacteria and are important veterinary and human pathogens with a worldwide distribution. Ehrlichia can cause prolonged or persistent infection in animal hosts. The pathogenesis of Ehrlichia is mediated principally by the immune response. In order to multiple inside host cell, Ehrlichia passively escape host innate immunity (such as pattern recognition receptors) due to lack of typical Gram negative bacterial cell wall components (such as lipopolysacchride and peptidoglycan) and actively encoded proteins that enter into host cell nucleus to manipulate host cell gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Donatien A, Lestoquard F (1935) Existence en Algerie d’une Rickettsia du chien. Bull Soc Pathol Exot 28:418–419.

    Google Scholar 

  • Allsopp BA (2010) Natural history of Ehrlichia ruminantium. Vet Parasitol 167:123–135.

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Markowitz N et al. (1987) Human infection with Ehrlichia canis, a leukocytic rickettsia. N Engl J Med 316:853–856.

    Article  CAS  PubMed  Google Scholar 

  • Popov VL, Chen SM, Feng HM, Walker DH (1995) Ultrastructural variation of cultured Ehrlichia chaffeensis. J Medical Microbiol 43:411–421.

    Article  CAS  Google Scholar 

  • Zhang JZ, Popov VL, Gao S, Walker DH, Yu XJ (2007) The developmental cycle of Ehrlichia chaffeensis in vertebrate cells. Cell Microbiol 9:610–618.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Miura K, Popov VL, Kumagai Y, Rikihisa Y (2011) Insights into the CtrA regulon in development of stress resistance in obligatory intracellular pathogen Ehrlichia chaffeensis. Mol Microbiol 82:1217–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XJ, Walker DH, Liu Y, Zhang L (2009) Amino acid biosynthesis deficiency in bacteria associated with human and animal hosts. Infect Genet Evol 9:514–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunning Hotopp JC, Lin M et al. (2006) Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2:e21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mavromatis K, Doyle CK et al. (2006) The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies. J Bacteriol 188:4015–4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XJ, Crocquet-Valdes P, Walker DH (1997) Cloning and sequencing of the gene for a 120-kDa immunodominant protein of Ehrlichia chaffeensis. Gene 184:149–154.

    Article  CAS  PubMed  Google Scholar 

  • Doyle CK, Nethery KA, Popov VL, McBride JW (2006) Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect Immun 74:711–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Zhang X, McBride JW (2009) Major species-specific antibody epitopes of the Ehrlichia chaffeensis p120 and E. canis p140 orthologs in surface-exposed tandem repeat regions. Clin Vaccine Immunol 16:982–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Zhang X, Wakeel A, Popov VL, McBride JW (2008) A variable-length PCR target protein of Ehrlichia chaffeensis contains major species-specific antibody epitopes in acidic serine-rich tandem repeats. Infect Immun 76:1572–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov VL, Yu X, Walker DH (2000) The 120 kDa outer membrane protein of Ehrlichia chaffeensis: preferential expression on dense-core cells and gene expression in Escherichia coli associated with attachment and entry. Microb Pathog 28:71–80.

    Google Scholar 

  • Andrić B (2014) Diagnostic evaluation of Ehrlichia canis human infections. Open J Med Microbiol 2014.

    Google Scholar 

  • Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45:15168–15178.

    Article  CAS  PubMed  Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Nethery KA et al. (2009) Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect Immun 77:4243–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakeel A, Zhu B, Yu XJ, McBride JW (2010) New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect 12:337–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EH, Rikihisa Y (1996) Absence of tumor necrosis factor alpha, interleukin-6 (IL-6), and granulocyte-macrophage colony-stimulating factor expression but presence of IL-1beta, IL-8, and IL-10 expression in human monocytes exposed to viable or killed Ehrlichia chaffeensis. Infect Immun 64:4211–4219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groves MG, Dennis GL, Amyx HL, Huxsoll DL (1975) Transmission of Ehrlichia canis to dogs by ticks (Rhipicephalus sanguineus). Am J Vet Res 36:937–940.

    CAS  PubMed  Google Scholar 

  • Smith RD, Sells DM, Stephenson EH, Ristic MR, Huxsoll DL (1976) Development of Ehrlichia canis, causative agent of canine ehrlichiosis, in the tick Rhipicephalus sanguineus and its differentiation from a symbiotic Rickettsia. Am J Vet Res 37:119–126.

    CAS  PubMed  Google Scholar 

  • Lewis GE, Jr., Ristic M, Smith RD, Lincoln T, Stephenson EH (1977) The brown dog tick Rhipicephalus sanguineus and the dog as experimental hosts of Ehrlichia canis. Am J Vet Res 38:1953–1955.

    PubMed  Google Scholar 

  • Faherty CS, Maurelli AT (2008) Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol 16:173–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantas-Torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasite Vector 3:26.

    Article  Google Scholar 

  • Lord CC (2001) Brown dog tick, Rhipicephalus sanguineus Latreille (Arachnida: Acari: Ixodidae). University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS,

    Google Scholar 

  • Johnson EM, Ewing SA et al. (1998) Experimental transmission of Ehrlichia canis (Rickettsiales: Ehrlichieae) by Dermacentor variabilis (Acari: Ixodidae). Vet Parasitol 74:277–288.

    Article  CAS  PubMed  Google Scholar 

  • Bowman D, Little SE et al. (2009) Prevalence and geographic distribution of Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum in dogs in the United States: results of a national clinic-based serologic survey. Vet Parasitol 160:138–148.

    Article  PubMed  Google Scholar 

  • Perez M, Rikihisa Y, Wen B (1996) Ehrlichia canis-like agent isolated from a man in Venezuela: antigenic and genetic characterization. J Clin Microbiol 34:2133–2139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez M, Bodor M, Zhang C, Xiong Q, Rikihisa Y (2006) Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann N Y Acad Sci 1078:110–117.

    Article  CAS  PubMed  Google Scholar 

  • Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev 16:37–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fishbein DB, Sawyer LA et al. (1987) Unexplained febrile illnesses after exposure to ticks: infection with an Ehrlichia? JAMA 257:3100–3104.

    Article  CAS  PubMed  Google Scholar 

  • Anderson BE, Dawson JE, Jones DC, Wilson KH (1991) Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol 29:2838–2842.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson JE, Anderson BE et al. (1991) Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. J Clin Microbiol 29:2741–2745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Diseases Control and Prevention. Statistics and Epidemiology: Annual Cases of Ehrlichiosis in the United States. http://www.cdc.gov/ehrlichiosis/stats/. Accessed in February, 2016

  • Anderson BE, Sims KG et al. (1993) Amblyomma americanum: a potential vector of human ehrlichiosis. Am J Trop Med Hyg 49:239–244.

    CAS  PubMed  Google Scholar 

  • Ewing SA, Dawson JE et al. (1995) Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J Med Entomol 32:368–374.

    Article  CAS  PubMed  Google Scholar 

  • Buller RS, Arens M et al. (1999) Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N Engl J Med 341:148–155.

    Article  CAS  PubMed  Google Scholar 

  • Anziani O, Ewing S, Barker R (1990) Experimental transmission of a granulocytic form of the tribe Ehrlichieae by Dermacentor variabilis and Amblyomma americanum to dogs. Am J Vet Res 51:929–931.

    CAS  PubMed  Google Scholar 

  • Paddock CD, Folk SM et al. (2001) Infections with Ehrlichia chaffeensis and Ehrlichia ewingii in persons coinfected with human immunodeficiency virus. Clin Infect Dis 33:1586–1594.

    Article  CAS  PubMed  Google Scholar 

  • Heitman KN, Dahlgren FS, Drexler NA, Massung RF, Behravesh CB (2016) Increasing incidence of ehrlichiosis in the United States: a summary of national surveillance of Ehrlichia chaffeensis and Ehrlichia ewingii infections in the United States, 2008–2012. Am J Trop Med Hyg 94:52–60.

    Article  CAS  Google Scholar 

  • Kawahara M, Suto C, Rikihisa Y, Yamamoto S, Tsuboi Y (1993) Characterization of ehrlichial organisms isolated from a wild mouse. J Clin Microbiol 31:89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen B, Rikihisa Y et al. (1995) Ehrlichia muris sp. nov., identified on the basis of 16S rRNA base sequences and serological, morphological, and biological characteristics. Int J Syst Bacteriol 45:250–254.

    Article  CAS  PubMed  Google Scholar 

  • Pritt BS, Sloan LM et al. (2011) Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. N Engl J Med 365:422–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DKH, Schiffman EK et al. (2015) Human Infection with Ehrlichia muris–like Pathogen, United States, 2007–2013. Emerg Infect Dis 21:1794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Telford III SR, Goethert HK, Cunningham JA (2011) Prevalence of Ehrlichia muris in Wisconsin deer ticks collected during the mid 1990s. Open Microbiol J 5:18–20.

    Article  Google Scholar 

  • Ismail N, Crossley EC, Stevenson HL, Walker DH (2007) Relative importance of T-cell subsets in monocytotropic ehrlichiosis: a novel effector mechanism involved in Ehrlichia-induced immunopathology in murine ehrlichiosis. Infect Immun 75:4608–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail N, Soong L et al. (2004) Overproduction of TNF-α by CD8+ type 1 cells and down-regulation of IFN-γ production by CD4+ Th1 cells contribute to toxic shock-like syndrome in an animal model of fatal monocytotropic ehrlichiosis. J Immunol 172:1786–1800.

    Article  CAS  PubMed  Google Scholar 

  • Ismail N, Stevenson HL, Walker DH (2006) Role of tumor necrosis factor alpha (TNF-α) and interleukin-10 in the pathogenesis of severe murine monocytotropic ehrlichiosis: increased resistance of TNF receptor p55-and p75-deficient mice to fatal ehrlichial infection. Infect Immun 74:1846–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Stevenson HL, Scott MJ, Ismail N (2015) Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. Am J Pathol 185:446–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Thai V, McCabe A, Jones M, MacNamara KC (2014) Type I interferons promote severe disease in a mouse model of lethal ehrlichiosis. Infect Immun 82:1698–1709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Ghose P, Ismail N (2013) Neutrophils mediate immunopathology and negatively regulate protective immune responses during fatal bacterial infection-induced toxic shock. Infect Immun 81:1751–1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattoraj P, Yang Q, Khandai A, Al-Hendy O, Ismail N (2013) TLR2 and Nod2 mediate resistance or susceptibility to fatal intracellular Ehrlichia infection in murine models of ehrlichiosis. PloS One 8:e58514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar DM, Yamaguchi M et al. (2013) Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLoS Pathog 9:e1003666.

    Article  Google Scholar 

  • Cheng Y, Liu Y et al. (2014) Proteomic Analysis of the Ehrlichia chaffeensis Phagosome in Cultured DH82 Cells. PloS One 9.

    Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T (2008) Toll-like receptors and myocardial contractile dysfunction. Cardiovasc Res 78:3–4.

    Article  CAS  PubMed  Google Scholar 

  • Green DR (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press,

    Google Scholar 

  • Mathema VB, Manzoor Z, Koo J-E, Koh Y-S (2013) Inhibition of cell death of bone marrow-derived macrophages infected with Ehrlichia muris. Ticks Tick Borne Dis 4:185–190.

    Article  PubMed  Google Scholar 

  • Zhang J-z, Sinha M, Luxon BA, Yu X-j (2004) Survival strategy of obligately intracellular Ehrlichia chaffeensis: novel modulation of immune response and host cell cycles. Infect Immun 72:498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-kB: players, pathways, perspectives. Oncogene 25:6680–6684.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MD, Harrison SC (1998) Structure of an IkBα/NF-kB complex. Cell 95:749–758.

    Article  CAS  PubMed  Google Scholar 

  • Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS letters 487:318–322.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Q, Bao W, Ge Y, Rikihisa Y (2008) Ehrlichia ewingii infection delays spontaneous neutrophil apoptosis through stabilization of mitochondria. J Infect Dis 197:1110–1118.

    Article  CAS  PubMed  Google Scholar 

  • Bitsaktsis C, Huntington J, Winslow G (2004) Production of IFN-γ by CD4 T cells is essential for resolving Ehrlichia infection. J Immunol 172:6894–6901.

    Article  CAS  PubMed  Google Scholar 

  • Ganta RR, Cheng C, Wilkerson MJ, Chapes SK (2004) Delayed clearance of Ehrlichia chaffeensis infection in CD4+ T-cell knockout mice. Infect Immun 72:159–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winslow GM, Yager E, LI JSY (2003) Mechanisms of humoral immunity during Ehrlichia chaffeensis infection. Ann N Y Acad Sci 990:435–443.

    Article  CAS  PubMed  Google Scholar 

  • Nau GJ, Richmond JF et al. (2002) Human macrophage activation programs induced by bacterial pathogens. PNAS 99:1503–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera L, Gazzinelli RT et al. (1996) Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 183:515–526.

    Article  CAS  PubMed  Google Scholar 

  • Marth T, Kelsall BL (1997) Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med 185:1987–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day MJ (2011) Clinical immunology of the dog and cat. CRC Press,

    Google Scholar 

  • Harrus S, Waner T et al. (2003) Down-regulation of MHC class II receptors of DH82 cells, following infection with Ehrlichia canis. Vet Immunol Immunopathol 96:239–243.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-jie Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Xj., Walker, D.H. (2016). Epidemiology, Molecular Biology, and Pathogenic Mechanisms of Ehrlichia Infections. In: Thomas, S. (eds) Rickettsiales. Springer, Cham. https://doi.org/10.1007/978-3-319-46859-4_12

Download citation

Publish with us

Policies and ethics