Skip to main content

Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection

  • Chapter
  • First Online:
Nanoscience and Plant–Soil Systems

Part of the book series: Soil Biology ((SOILBIOL,volume 48))

Abstract

The nanotechnology offers several novel applications in the crop production and pest management. Nanoparticles (NPs) can be used in the preparation of new formulations of fertilizers and pesticides. Nanoencapsulation is a most promising technology to step down the chemical release under controlled situations, reducing the current application dosage and improving efficiency of a fertilizer or pesticide. Besides, there are a number of nanomaterials including polymeric nanoparticles, zinc oxide NPs, iron oxide NPs, gold NPs and sliver NPs which can be easily synthesized and exploited as fertilizer or pesticide. However, elaborated efforts are needed to systematically elucidate the interaction of nanoparticles with plants, microorganisms and soil. Multifunctional field studies are required to confirm the fertilizing/suppressing effects of nanoparticles on various plants and pest–pathogen interactions under varied environments. The eutrophication potential of nanoparticles needs to be specially addressed. The present chapter critically analyzes the pertinent information available on the scope and use of nanotechnology in meeting the current as well as future challenges of soil nutrition and crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullayev E, Lvov Y (2011) Halloysite clay nanotubes for controlled release of protective agents. J Nanosci Nanotechnol 11:10007–10026

    Article  CAS  PubMed  Google Scholar 

  • Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health B 47:226–231

    Article  CAS  PubMed  Google Scholar 

  • Afrasiabi Z, Eivazi F, Popham H, Stanley D, Upendran A, Kannan R (2012) Silver nanoparticles as pesticides. National Institute of Food and Agriculture 1890 Capacity Building Grants Program Project Director’s Meeting. Huntsville, AL

    Google Scholar 

  • Ahamed AT, Wael FT, Shaaban MA, Mohammed FS (2011) Antibacterial action of zinc oxide nanoparticle agents’ foodborne pathogens. J Food Saf 31:211–218

    Article  CAS  Google Scholar 

  • Amrani M, Westfall DG, Peterson GA (1999) Influence of water solubility of granular zinc fertilizers on plant uptake and growth. J Plant Nutr 22:1815–1827

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Bashi AM, Haddawi SM, Dawood AH (2011) Synthesis and characterizations of two herbicides with Zn/Al layered double hydroxide nano hybrides. J Kerbala Univ 9:9–16

    Google Scholar 

  • Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. Proc Int Conf Nanomater 2:14 (2 pp)

    Google Scholar 

  • Behera SK, Panda RK (2009) Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling. Agric Water Manage 96:1532–1540

    Article  Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. IJSID 2:21–36

    Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Buda AR, Koopmans GF, Bryant RB, Chardon WJ (2012) Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction. J Environ Qual 41:621–627

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Zhang L, Zheng H, Wang Z (2010) Hydroxyapatite nanocrystals for biomedical applications. J Phys Chem C 114:18352–18357

    Article  CAS  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: biostability and soil phosphorus. Proc Natl Acad Sci USA 102:9999–10001

    Article  CAS  Google Scholar 

  • Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105:11039–11040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah, Kandakoor SB (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281

    Google Scholar 

  • Chen H, Seiber JN, Hotze M (2014) ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agri Food Chem 62:1209–1212

    Article  CAS  Google Scholar 

  • Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61:117–124

    Article  Google Scholar 

  • Cho JS, Kang YC (2008) Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloy Compd 464:282–287

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419

    Article  CAS  Google Scholar 

  • Clement JL, Jarret PS (1994) Antimicrobial silver. Metal-Based Drugs 1:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles D, Frewer LJ (2013) Nanotechnology applied to European food production: a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43

    Article  CAS  Google Scholar 

  • Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67:1162–1169

    Article  CAS  Google Scholar 

  • Conley DJ (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Correll DL (1998) The role of phosphorous in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • De la Rosa G, Lopez-Moreno ML, De Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey J (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174

    Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • De-Bashana LE, Bashana Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246

    Article  CAS  Google Scholar 

  • Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf A Physicochem Eng Asp 372:66–72

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701

    Article  CAS  PubMed  Google Scholar 

  • Fageria NK (2009) The use of nutrient in crop plants. CRC Press, Boca Raton, FL, p 430

    Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanism study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Forsberg EM, de Lauwere C (2013) Integration needs in assessments of nanotechnology in food and agriculture. Etikk. i. Praksis 1:38–54

    Google Scholar 

  • Frewer LJ, Norde W, Fischer ARH, Kampers FWH (eds) (2011) Nanotechnology in the agri-food sector: implications for the future. Wiley, Weinheim

    Google Scholar 

  • Gangloff WJ, Westfall DG, Peterson GA, Mortvedt JJ (2002) Relative availability coefficients of organic and inorganic Zn fertilizers. J Plant Nutr 25:259–273

    Article  CAS  Google Scholar 

  • Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol (Campinas) 30:573–581

    Google Scholar 

  • Ghazali SMSAI, Hussein MZ, Sarijo SH (2013) 3,4-Dichlorophenoxyacetate interleaved into anionic clay for controlled release formulation of a new environmentally friendly agrochemical. Nanoscale Res Lett 8:362

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints. Policy Brief 19, vol 19. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Gu YF, Zhang ZP, Tu SH, Lindström K (2009) Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. Eur J Soil Biol 45:239–246

    Article  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Guo JS (2011) Synchrotron radiation, soft x-ray spectroscopy and nanomaterials. Int J Nanotechnol 1:193–225

    Article  Google Scholar 

  • Guo MY, Liu MZ, Zhan FL, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with super absorbent and moisture preservation. Ind Eng Chem Res 44:4206–4211

    Article  CAS  Google Scholar 

  • Han WWT, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197

    Article  CAS  Google Scholar 

  • Han Y, Wang X, Li S (2008) A simple route to prepare stable hydroxyapatite nanoparticles suspension. J Nanopart Res 11:1235–1240

    Article  CAS  Google Scholar 

  • Hatschek E (1931) Electro Chem. Processes, Ltd, assignee. Brouisol. British patent No 392,556

    Google Scholar 

  • Hoffmann CC (2009) Phosphorus retention in riparian buffers: review of their efficiency. J Environ Qual 38:1942–1955

    Article  CAS  PubMed  Google Scholar 

  • Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloid Surf B 62:42–50

    Article  CAS  Google Scholar 

  • Hussein MZ, Yahya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of herbicide 2,4-dichlorophenoxy acetate encapsulated in Zn/Al layered double hydroxide. Sci Tech Adv Mater 6:956–962

    Article  CAS  Google Scholar 

  • Hussein MZ, Sarijo SH, Yahaya AH, Zainal Z (2007) Synthesis of 4-chlorophenoxyacetate-zinc-aluminium-layered double hydroxide nanocomposite: physico-chemical and controlled release properties. J Nanosci Nanotechnol 7:2852–2862

    Article  PubMed  CAS  Google Scholar 

  • Hussein MZ, Hashim N, Yahaya AH, Zainal Z (2010) Synthesis and characterization of [4-(2, 4-dichlorophenoxybutyrate)-zinc layered hydroxide] nanohybrid. Solid State Sci 2:770–775

    Article  CAS  Google Scholar 

  • Hussein MZ, Rahman NS, Sarijo SH, Zainal Z (2012) Herbicide-intercalated zinc layered hydroxide nanohybrid for a dual-guest controlled release formulation. Int J Mol Sci 13:7328–7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nano-particles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kamran S, Forogh M, Mahtab E, Mohammad (2011) In vitro antibacterial activity of nanomaterials for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372–373

    Google Scholar 

  • Kanimozhi V, Chinnamuthu CR (2012) Engineering core/hallow shell nanomaterials to load herbicide active ingredient for controlled release. Res J Nanosci Nanotechnol 2:58–69

    Article  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  PubMed  Google Scholar 

  • Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:034122

    Article  PubMed  CAS  Google Scholar 

  • Khan MR, Jairajpuri MS (2012) Nematode infestation in horticultural crops, national scenario. In: Khan MR, Jairajpuri MS (eds) Nematode infestation Part III: horticultural crops. National Academy of Sciences, Allahabad, pp 1–30

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    Article  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Knauer K, Bucheli TD (2009) Nano-materials: research needs in agriculture. Revue Suisse d’Agric 41:337–341

    Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Kumar J, Shakil NA, Khan MA, Malik K, Walia S (2011) Development of controlled release formulations of carbofuran and imidacloprid and their bioefficacy evaluation against aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. J Environ Sci Health B 46:678–682

    CAS  PubMed  Google Scholar 

  • Lamsal K, Sang-Woo K, Jung JH, Kim YS, Kim KU, Lee YS (2010) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Microbiology 39:26–32

    Google Scholar 

  • Li J, Shu D, Yin J, Liu Y, Yao F, Yao V (2010) Formation of nano-hydroxyapatite crystal in situ in chitosan–pectin polyelectrolyte complex network. Mater Sci Eng C 30:795–803

    Article  CAS  Google Scholar 

  • Litke DW (1999) Review of phosphorus control measures in the United States and their effects on water quality. U.S. Geological Survey Water-Resources Investigations Report 99–4007 (1999)

    Google Scholar 

  • Liu C (2008) Biomimetic synthesis of collagen/nano-hydroxyapatite scaffold for tissue engineering. J Bionic Eng 5:1–8

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Environ Sci Environ Chem 4:5686

    CAS  Google Scholar 

  • Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 22:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Lodriche SS, Soltani S, Mirzazadeh R (2013) Inventors and assignees. Silicon nanocarrier for delivery of drug, pesticides and herbicides, and for waste water treatment. United States patent US 20130225412 A1. August 29, 2013

    Google Scholar 

  • Lu CM, Zhang CY, Wen IQ, Wu GR (2002) Effects of nano materials on germination and growth of soybean. Soybean Sci 21:168–171

    CAS  Google Scholar 

  • Manafi SA, Joughehdoust S (2009) Synthesis of hydroxyapatite nanostructure by hydrothermal condition for biomedical application. Iran J Pharm 5:89–94

    CAS  Google Scholar 

  • Mandal KG, Hati KM, Misra AK (2009) Biomass yield and energy analysis of soybean production in relation to fertilizer-NPK and organic manure. Biomass Bioenergy 33:1670–1679

    Article  CAS  Google Scholar 

  • Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9:276–284

    Article  CAS  Google Scholar 

  • Manimegalai G, Kumar SS, Sharma C (2011) Pesticide mineralization in water using silver nanoparticles. Int J Chem Sci 9:1463–1471

    CAS  Google Scholar 

  • Martens DC, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 549–592

    Google Scholar 

  • Mateus AYP, Barrias CC, Ribeiro C, Ferraz MP, Monteiro FJ (2007) Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A 86:483–493

    Google Scholar 

  • Mcqquire RG, Ching JYC, Vignaud E, Lebuge A, Mann S (2004) Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J Mater Chem 14:2277–2281

    Article  CAS  Google Scholar 

  • Milani N, Mc Laughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    Article  CAS  PubMed  Google Scholar 

  • Montazeri L, Javadpour J, Shokrgozar ML, Bonakdar S, Javadian S (2010) Hydrothermal synthesis and characterization of hydroxyapatite and fluorohydroxyapatite nano-size powders. Biomed Mater 5:7

    Article  CAS  Google Scholar 

  • Mortvedt JJ, Giordano PM (1969) Extractability of zinc granulated with macronutrient fertilizers in relation to its agronomic effective mess. J Agric Food Chem 17:1272–1275

    Article  CAS  Google Scholar 

  • Murphy K (2008) Nanotechnology: agriculture’s next “industrial” revolution. Financial Partner, Yankee Farm Credit, ACA, Williston, pp 3–5

    Google Scholar 

  • No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:87–100

    Article  CAS  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects diseases, development and yield of edible cowpea. EJEAF Che 7:2942–2947

    CAS  Google Scholar 

  • Panwar J, Jain N, Bhargaya A, Akhtar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing “Nano-fertilizers” 01/2012. In: Proceeding of 3rd international conference on environmental research and technology (ICERT); May 30–June 1, 2012, Penang

    Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley, West Sussex, pp 299–405

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manage Sci 65:540–545

    Article  CAS  Google Scholar 

  • Perlatti B, de Souza, Bergo PL, da Silva MF (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals, insecticides. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Croatia, pp 523–550

    Google Scholar 

  • Poinern GE, Brundavanam RK, Mondinos N, Jiang ZT (2009) Synthesis and characterization of nanohydroxyapatite using an ultrasound assisted method. Ultrason Sonochem 16:469–474

    Article  CAS  PubMed  Google Scholar 

  • Poursamar SA, Rabiee M, Samadikuchaksaraei V, Karimi M, Azami M (2009) Influence of the value of the pH on the preparation of nano hydroxyapatite polyvinyl alcohol composites. J Ceram Process Res 10:679–682

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasanna BM (2007) Nanotechnology in agriculture. Indian Agricultural Statistics Research Institute, New Delhi

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev 76:27–64

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP (2014) Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr Opin Biotechnol 28:51–58

    Article  CAS  PubMed  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72:590–594

    Article  Google Scholar 

  • Saigusa M (2000) Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. J Plant Nutri 23:1485–1493

    Article  Google Scholar 

  • Samuel U, Guggenbichler JP (2004) Prevention of catheterrelated infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23S1:S75–S78

    Google Scholar 

  • Sarijo SH, bin Hussein MZ, Yahaya AH, Zainal Z, Yarmo MA (2010) Synthesis of phenoxyherbicides-intercalated layered double hydroxide nanohybrids and their controlled release property. Curr Nanosci 6:199–205

    Article  CAS  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  CAS  PubMed  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–39

    Chapter  Google Scholar 

  • Scott NR (2007) Nanotechnology opportunities in agriculture and food systems. Biological and Environmental Engineering, Cornell University NSF Nanoscale Science and Engineering Grantees Conference, Arlington. http://www.nseresearch.org/2007/overviews/Day3_Scott.pdf. Accessed 19 Apr 2014

  • Scott N, Chen H (2012) Nanoscale science and engineering for agriculture and food systems. National Planning Workshop, Washington, DC. http://www.nseafs.cornell.edu/web.roadmap.pdf. Accessed 18 Apr 2014

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:22–44

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology, science and applications. Dovepress 7:31–53

    Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils: a global study. Food and Agriculture Organization of the United Nations (FAO), Rome, p 444

    Google Scholar 

  • Sillanpaa M (1990) Micronutrient assessment at country level: an international study. FAO, Rome, p 208

    Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4:8–18

    Article  CAS  PubMed  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manage Sci 66:577–579

    CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Product Res 48:81–90

    Article  Google Scholar 

  • Teodorescu M, Lungu A, Stanescu PO, Neamtu C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly(acrylic acid) hydrogels and liquid fertilizer. Ind Eng Chem Res 48:6527–6534

    Article  CAS  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc B 365:2853–2867

    Article  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue State Agric Technol Ser Assoc 1–18

    Google Scholar 

  • Vidyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics” – a review. Adv Biol Res 3:96–103

    Google Scholar 

  • Westfall DG, Mortvedt JJ, Peterson GA, Gangloff WJ (1991) Efficient and environmentally safe use of micronutrients in agriculture. Commun Soil Sci Plant Anal 36:169–182

    Article  CAS  Google Scholar 

  • Zhao M, Liu L, Her R (2012) Nano-sized delivery for agricultural chemicals. In: Tiddy G, Tan R (eds) NanoFormulation. Royal Society of Chemistry, Cambridge, pp 256–265

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujeebur Rahman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, M.R., Rizvi, T.F. (2017). Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection. In: Ghorbanpour, M., Manika, K., Varma, A. (eds) Nanoscience and Plant–Soil Systems. Soil Biology, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_15

Download citation

Publish with us

Policies and ethics