Skip to main content

Abstract

We study how to efficiently transfer energy wirelessly in ad hoc networks of battery-limited devices, toward prolonging their lifetime. In contrast to the state-of-the-art, we assume a much weaker population of distributed devices which are exchanging energy in a “peer to peer”, bi-directional manner with each other, without any special charger nodes. We address a quite general case of diverse energy levels and priorities in the network and study the problem of how the system can efficiently reach a weighted energy balance state distributively, under both loss-less and lossy power transfer assumptions. Three protocols are designed, analyzed, and evaluated, achieving different performance trade-offs between energy balance quality, convergence time, and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our setting, the term time is used to mean number of interactions.

  2. 2.

    Nevertheless, it is not hard to see that other variations of \({\mathscr {P}}_{\text {OWS}}\) have similar problems.

  3. 3.

    The total variation distance consists of 2 terms, since there are only 2 agents with energy levels below the average.

  4. 4.

    Notice that, by definition, agents cannot store all weights and all energy levels of other agents separately. Indeed, this contradicts our assumption that agents are identical.

References

  1. Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs (2002). http://www.stat.berkeley.edu/~aldous/RWG/book.html. (Unfinished monograph, recompiled 2014)

  2. Angelopoulos, C.M., Buwaya, J., Evangelatos, O., Rolim, J.: Traversal strategies for wireless power transfer in mobile ad-hoc networks. In: Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’15. ACM (2015)

    Google Scholar 

  3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC’04, pp. 290–299. ACM, New York, NY, USA (2004). doi:10.1145/1011767.1011810

  4. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, PODC’06, pp. 292–299. ACM, New York, NY, USA (2006). doi:10.1145/1146381.1146425

  5. Del Prete, M., Berra, F., Costanzo, A., Masotti, D.: Exploitation of a dual-band cell phone antenna for near-field WPT. In: Wireless Power Transfer Conference (WPTC), 2015 IEEE (2015). doi:10.1109/WPT.2015.7139132

  6. del Prete, M., Costanzo, A., Georgiadis, A., Collado, A., Masotti, D., Popovic, Z.: Energy-autonomous bi-directional Wireless Power Transmission (WPT) and energy harvesting circuit. In: Microwave Symposium (IMS), 2015 IEEE MTT-S International (2015). doi:10.1109/MWSYM.2015.7166982

  7. Griffin, B., Detweiler, C.: Resonant wireless power transfer to ground sensors from a UAV. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 2660–2665 (2012). doi:10.1109/ICRA.2012.6225205

  8. Guo, S., Wang, C., Yang, Y.: Mobile data gathering with wireless energy replenishment in rechargeable sensor networks. In: INFOCOM, 2013 Proceedings IEEE, pp. 1932–1940 (2013). doi:10.1109/INFCOM.2013.6566993

  9. Guo, S., Wang, C., Yang, Y.: Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 13(12), 2836–2852 (2014). doi:10.1109/TMC.2014.2307332

    Article  Google Scholar 

  10. Johnson, J., Basha, E., Detweiler, C.: Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging. In: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 159–164 (2013). doi:10.1109/ISSNIP.2013.6529782

  11. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2006)

    Google Scholar 

  12. Luo, J., He, Y.: Geoquorum: load balancing and energy efficient data access in wireless sensor networks. In: INFOCOM, 2011 Proceedings IEEE, pp. 616–620 (2011). doi:10.1109/INFCOM.2011.5935238

  13. Madhja, A., Nikoletseas, S., Raptis, T.: Hierarchical, collaborative wireless charging in sensor networks. In: Wireless Communications and Networking Conference (WCNC), 2015 IEEE, pp. 1285–1290 (2015). doi:10.1109/WCNC.2015.7127654

  14. Naderi, M., Chowdhury, K., Basagni, S., Heinzelman, W., De, S., Jana, S.: Experimental study of concurrent data and wireless energy transfer for sensor networks. In: Global Communications Conference (GLOBECOM), 2014 IEEE, pp. 2543–2549 (2014). doi:10.1109/GLOCOM.2014.7037190

  15. Nikoletseas, S., Raptis, T.P., Souroulagkas, A., Tsolovos, D.: An experimental evaluation of wireless power transfer protocols in mobile ad hoc networks. In: Wireless Power Transfer Conference (WPTC), 2015 IEEE (2015). doi:10.1109/WPT.2015.7139128

  16. Peng, Y., Li, Z., Zhang, W., Qiao, D.: Prolonging sensor network lifetime through wireless charging. In: Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pp. 129–139 (2010). doi:10.1109/RTSS.2010.35

  17. Rault, T., Bouabdallah, A., Challal, Y.: Multi-hop wireless charging optimization in low-power networks. In: Global Communications Conference (GLOBECOM), 2013 IEEE, pp. 462–467 (2013). doi:10.1109/GLOCOM.2013.6831114

  18. Rolim, J.: Energy balance mechanisms and lifetime optimization of wireless networks. In: Contemporary Computing. Communications in Computer and Information Science, vol. 168. Springer, Berlin (2011)

    Google Scholar 

  19. Schafer, S., Coffey, M., Popovic, Z.: X-band wireless power transfer with two-stage high-efficiency GaN PA/rectifier. In: Wireless Power Transfer Conference (WPTC), 2015 IEEE (2015). doi:10.1109/WPT.2015.7140186

  20. Wang, C., Li, J., Ye, F., Yang, Y.: Recharging schedules for wireless sensor networks with vehicle movement costs and capacity constraints. In: 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 468–476 (2014). doi:10.1109/SAHCN.2014.6990385

  21. Wang, C., Li, J., Ye, F., Yang, Y.: Netwrap: an ndn based real-timewireless recharging framework for wireless sensor networks. IEEE Trans. Mob. Comput. 13(6), 1283–1297 (2014). doi:10.1109/TMC.2013.2296515

    Article  Google Scholar 

  22. Xiang, L., Luo, J., Han, K., Shi, G.: Fueling wireless networks perpetually: a case of multi-hop wireless power distribution. In: 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1994–1999 (2013). doi:10.1109/PIMRC.2013.6666471

  23. Xie, L., Shi, Y., Hou, Y.T., Sherali, H.D.: Making sensor networks immortal: an energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Netw. 20(6), 1748–1761 (2012). doi:10.1109/TNET.2012.2185831

    Article  Google Scholar 

  24. Zhang, S., Wu, J., Lu, S.: Collaborative mobile charging. IEEE Trans. Comput. 64(3), 654–667 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris Nikoletseas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Nikoletseas, S., Raptis, T.P., Raptopoulos, C. (2016). Interactive Wireless Charging for Energy Balance. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics