Advertisement

Neutral Genetic Variation

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

Neutral genetic variation is described as that which is unaffected by natural selection. The neutral theory of molecular evolution, proposed in the late 1960s (Kimura 1968; King and Jukes 1969), holds that most genetic variation at the molecular level is evolutionarily neutral, the product of mutation, migration, drift, and mating systems rather than selection. For some time, disagreement over the extent or amount of molecular variation that is “neutral” was featured in the evolutionary literature, labeled as the neutralist/selectionist debate. Ohta (2002) suggested that slightly deleterious mutations can lead to nearly neutral variation, and today’s literature generally uses the descriptor “neutral or nearly neutral” when describing most types of molecular variation. The neutral theory of molecular evolution was formalized in the late 1960s, in part due to recognition of developing technologies that provided scientists with the ability to observe variation at the level of individual genes. The neutral theory continues to be refined (Kimura 1983; Nei 2005, 2013; Nei et al. 2010).

References

  1. Aagaard, J. E., Vollmer, S. S., Sorensen, F. C., & Strauss, S. H. (1995). Mitochondrial DNA products among RAPD profiles are frequent and strongly differentiated between races of Douglas-fir. Molecular Ecology, 4(4), 441–446.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aagaard, J. E., Krutovskii, K. V., & Strauss, S. H. (1998a). RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. Heredity, 81(1), 69–78.CrossRefGoogle Scholar
  3. Adams, W. T. (1983). Application of isozymes in tree breeding. Developments in plant genetics and breeding (pp. 381–400). Amsterdam: Elsevier Science Publishers BV.Google Scholar
  4. Adams, W. T., & Burczyk, J. (2000). Magnitude and implications of gene flow in gene conservation reserves. In A. Young, D. Boshier, & T. Boyle (Eds.), Forest conservation genetics: Principles and practice (pp. 215–244). Oxon/Collingwood: Commonwealth Scientific and Industrial Research Organization (CSIRO) Publishing/CABI Publishing.CrossRefGoogle Scholar
  5. Adams, W. T., Hipkins, V. D., Burczyk, J., & Randall, W. K. (1997). Pollen contamination trends in a maturing Douglas-fir seed orchard. Canadian Journal of Forest Research, 27(1), 131–134.CrossRefGoogle Scholar
  6. Adams, W. T., Zuo, J., Shimizu, J. Y., & Tappeiner, J. C. (1998). Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir. Forest Science, 44(3), 390–396.Google Scholar
  7. Aguirre-Planter, E., Furnier, G. R., & Eguiarte, L. E. (2000). Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from southern Mexico and Guatemala. American Journal of Botany, 87(3), 362–371.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Agúndez, D., Degen, B., Von Wuehlisch, G., & Alía, R. (1999). Multilocus analysis of Pinus halepensis Mill. From Spain: Genetic diversity and clinal variation. Silvae Genetica, 48, 173–178.Google Scholar
  9. Aitken, S. N., & Libby, W. J. (1994). Evolution of the pygmy-forest edaphic subspecies of Pinus contorta across an ecological staircase. Evolution, 48, 1009–1019.PubMedPubMedCentralGoogle Scholar
  10. Anderson, L. L., Hu, F. S., & Paige, K. N. (2011). Phylogeographic history of white spruce during the last glacial maximum: Uncovering cryptic refugia. The Journal of Heredity, 102(2), 207–216.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Avise, J. C. (2009). Phylogeography: Retrospect and prospect. Journal of Biogeography, 36(1), 3–15.CrossRefGoogle Scholar
  12. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., & Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18(1), 489–522.CrossRefGoogle Scholar
  13. Bagnoli, F., Fady, B., Fineschi, S., Oddou-Muratorio, S., Piotti, A., Sebastiani, F., & Vendramin, G. G. (2011). Neutral patterns of genetic variation and applications to conservation in conifer species. In Genetics, genomics and breeding of conifers (pp. 141–195). Boca Raton: CRC Press.Google Scholar
  14. Ballian, D., Longauer, R., Mikić, T., Paule, L., Kajba, D., & Gömöry, D. (2006). Genetic structure of a rare European conifer, Serbian spruce (Picea omorika (Panč.) Purk.). Plant Systematics and Evolution, 260(1), 53–63.CrossRefGoogle Scholar
  15. Bilgen, B., & Kaya, N. (2007). Allozyme variations in six natural populations of scots pine (Pinus sylvestris) in Turkey. Biologia, 62(6), 697–703.CrossRefGoogle Scholar
  16. Bongarten, B. C., Wheeler, N. C., & Jech, K. S. (1985). Isozyme heterozygosity as a selection criterion for yield improvement in Douglas-fir. In New ways in forest genetics (pp. 19–22). Proceedings of the Canadian tree improvement association Québec Que.Google Scholar
  17. Boscherini, G., Morgante, M., Rossi, P., & Vendramin, G. G. (1994). Allozyme and chloroplast DNA variation in Italian and Greek populations of Pinus leucodermis. Heredity, 73(3), 284–290.PubMedGoogle Scholar
  18. Boys, J., Cherry, M., & Dayanandan, S. (2005). Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae). American Journal of Botany, 92(5), 833–841.PubMedCrossRefGoogle Scholar
  19. Bucci, G., Vendramin, G. G., Lelli, L., & Vicario, F. (1997). Assessing the genetic divergence of Pinus leucodermis Ant. endangered populations: Use of molecular markers for conservation purposes. Theoretical and Applied Genetics, 95(7), 1138–1146.CrossRefGoogle Scholar
  20. Burczyk, J., Lewandowski, A., & Chalupka, W. (2004a). Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 197(1), 39–48.CrossRefGoogle Scholar
  21. Chaisurisri, K., & El-Kassaby, Y. A. (1994). Genetic diversity in a seed production population vs. natural populations of Sitka spruce. Biodiversity and Conservation, 3(6), 512–523.CrossRefGoogle Scholar
  22. Chung, M. G., Oh, G. S., & Chung, J. M. (1999). Allozyme variation in Korean populations of Taxus cuspidata (Taxaceae). Scandinavian Journal of Forest Research, 14(2), 103–110.CrossRefGoogle Scholar
  23. Chybicki, I. J., Oleksa, A., & Kowalkowska, K. (2012). Variable rates of random genetic drift in protected populations of English yew: Implications for gene pool conservation. Conservation Genetics, 13(4), 899–911.CrossRefGoogle Scholar
  24. Critchfield, W. B. (1957). Geographic variation in Pinus contorta (Maria Moors Cabot Foundation, Publication Number 3). Cambridge, MA: Harvard University. 118 p.Google Scholar
  25. Critchfield, W. B. (1984a, August 30). Impact of the Pleistocene on the genetic structure of North American conifers. In 8th North American forest biology workshop. Logan, Utah (Edited and Compiled by R. Lanner. pp. 70–118).Google Scholar
  26. Cruz-Nicolás, J., Vargas-Hernández, J. J., Ramírez-Vallejo, P., & López-Upton, J. (2011). Diversidad genética y diferenciación de las poblaciones de Pseudotsuga menziesii (Mirb.) Franco en México. Revista Fitotecnia Mexicana, 34(4), 233–240.Google Scholar
  27. Cwynar, L. C., & MacDonald, G. M. (1987). Geographical variation of lodgepole pine in relation to population history. The American Naturalist, 129(3), 463–469.CrossRefGoogle Scholar
  28. Dantas, L. G., Esposito, T., de Sousa, A. C. B., Félix, L., Amorim, L. L., Benko-Iseppon, A. M., et al. (2015). Low genetic diversity and high differentiation among relict populations of the neotropical gymnosperm Podocarpus sellowii (Klotz.) in the Atlantic Forest. Genetica, 143(1), 21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Delgado, P., Cuenca, A., Escalante, A. E., Molina-Freaner, F., & Piñero, D. (2002). Comparative genetic structure in pines: Evolutionary and conservation consequences. Revista Chilena de Historia Natural, 75, 27–37.Google Scholar
  30. Delgado, P., Piñero, D., Rebolledo, V., Jardón, L., & Chi, F. (2011). Genetic variation and demographic contraction of the remnant populations of Mexican Caribbean pine (Pinus caribaea var. hondurensis: Pinaceae). Annals of Forest Science, 68(1), 121–128.CrossRefGoogle Scholar
  31. Dong, J., & Wagner, D. B. (1993). Taxonomic and population differentiation of mitochondrial diversity in Pinus banksiana and Pinus contorta. Theoretical and Applied Genetics, 86(5), 573–578.PubMedPubMedCentralGoogle Scholar
  32. Ducci, F., Proietti, R., & Favre, J. M. (1999). Allozyme assessment of genetic diversity within the relic Sicilian fir Abies nebrodensis (Lojac.) Mattei. Annals of Forest Science, 56(4), 345–355.CrossRefGoogle Scholar
  33. Duran, C., Appleby, N., Edwards, D., & Batley, J. (2009). Molecular genetic markers: Discovery, applications, data storage and visualisation. Current Bioinformatics, 4(1), 16–27.CrossRefGoogle Scholar
  34. Dzialuk, A., Chybicki, I., Gout, R., Mączka, T., Fleischer, P., Konrad, H., Curtu, A. L., Sofletea, N., & Valadon, A. (2014). No reduction in genetic diversity of Swiss stone pine (Pinus cembra L) in Tatra Mountains despite high fragmentation and small population size. Conservation Genetics, 15(6), 1433–1445.CrossRefGoogle Scholar
  35. El-Kassaby, Y. A., & Lstibůrek, M. (2009). Breeding without breeding. Genetics Research, 91(02), 111–120.PubMedCrossRefPubMedCentralGoogle Scholar
  36. El-Kassaby, Y. A., & Ritland, K. (1996a). Genetic variation in low elevation Douglas-fir of British Columbia and its relevance to gene conservation. Biodiversity and Conservation, 5(6), 779–794.CrossRefGoogle Scholar
  37. El-Kassaby, Y. A., & Ritland, K. (1996b). Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodiversity and Conservation, 5(6), 795–813.CrossRefGoogle Scholar
  38. El-Kassaby, Y. A., & Sziklai, O. (1982). Genetic variation of allozyme and quantitative traits in a selected Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco] population. Forest Ecology and Management, 4(2), 115–126.CrossRefGoogle Scholar
  39. El-Kassaby, Y. A., & Yanchuk, A. D. (1994). Genetic diversity, differentiation, and inbreeding in Pacific yew from British Columbia. Journal of Heredity, 85(2), 112–117.CrossRefGoogle Scholar
  40. Erickson, V. J., & Adams, W. T. (1989). Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Canadian Journal of Forest Research, 19, 1248–1255.CrossRefGoogle Scholar
  41. Fady, B., & Conkle, M. T. (1993). Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Genetica, 42, 351–359.Google Scholar
  42. Fageria, M. S., & Rajora, O. P. (2013). Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evolutionary Applications, 6(5), 778–794.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fazekas, A. J., & Yeh, F. C. (2006). Postglacial colonization and population genetic relationships in the Pinus contorta complex. Canadian Journal of Botany, 84(2), 223–234.CrossRefGoogle Scholar
  44. Ferreyra, L. L., Latino, A., Calderon, A., & Gardenal, C. N. (1996). Allozyme polymorphism in Austrocedrus chilensis (D Don) florin and Boutelie from Patagonia Argentina. Silvae Genetica, 45, 61–63.Google Scholar
  45. Fins, L., & Seeb, L. W. (1986). Genetic variation in allozymes of western larch. Canadian Journal of Forest Research, 16(5), 1013–1018.CrossRefGoogle Scholar
  46. Fowler, D. P., & Park, Y. S. (1983). Population studies of white spruce. I. Effects of self-pollination. Canadian Journal of Forest Research, 13, 1133–1138.CrossRefGoogle Scholar
  47. Furnier, G. R., Stine, M., Mohn, C. A., & Clyde, M. A. (1991). Geographic patterns of variation in allozymes and height growth in white spruce. Canadian Journal of Forest Research, 21(5), 707–712.CrossRefGoogle Scholar
  48. Gajurel, J. P., Cornejo, C., Werth, S., Shrestha, K. K., & Scheidegger, C. (2013). Development and characterization of microsatellite loci in the endangered species Taxus wallichiana (Taxaceae). Applications in Plant Sciences, 1(3), 1200281. http://www.bioone.org/loi/apps.CrossRefGoogle Scholar
  49. Giannini, R., Morcante, M., & Vendramin, G. G. (1991). Allozyme variation in Italian populations of Picea abies (L) Karst. Silvae Genetica, 40, 160–166.Google Scholar
  50. Godbout, J., Fazekas, A., Newton, C. H., Yeh, F. C., & Bousquet, J. (2008). Glacial vicariance in the Pacific Northwest: Evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. Molecular Ecology, 17(10), 2463–2475.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Godbout, J., Beaulieu, J., & Bousquet, J. (2010). Phylogeographic structure of jack pine (Pinus banksiana; Pinaceae) supports the existence of a coastal glacial refugium in northeastern North America. American Journal of Botany, 97, 1903–1912.PubMedCrossRefPubMedCentralGoogle Scholar
  52. González-Martínez, S. C., Alía, R., & Gil, L. (2002). Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): A comparison of allozyme markers and quantitative traits. Heredity, 89(3), 199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hamrick, J. L., & Godt, M. J. W. (1989). Allozyme diversity in plant species. In A. H. D. Brown, M. T. Clegg, A. L. Kahler, & B. S. Weir (Eds.), Plant population genetics, breeding and genetic resources (pp. 43–63). Sunderland, MA: Sinauer Associates Inc.Google Scholar
  54. Hamrick, J. L., Linhart, Y. B., & Mitton, J. B. (1979). Relationships between life history characteristics and electrophoretically-detectable genetic variation in plants. Annual Review of Ecology and Systematics, 10, 173–200.CrossRefGoogle Scholar
  55. Hamrick, J. L., Godt, M. J. W., & Sherman-Broyles, S. L. (1992). Factors influencing levels of genetic diversity in woody plant species. In W. T. Adams, S. H. Strauss, D. L. Copes, A. R. Griffen (Eds.), Population genetics of forest trees (pp. 95–124). Proceedings of the international symposium population genet forest trees, Corvallis, OR, USA, July 31–August 2, 1990. Springer, Netherlands.Google Scholar
  56. Heredia, U. L., López, R., Collada, C., Emerson, B. C., & Gil, L. (2014). Signatures of volcanism and aridity in the evolution of an insular pine (Pinus canariensis Chr. Sm. Ex DC in Buch). Heredity, 113(3), 240–249.CrossRefGoogle Scholar
  57. Heusser, C. J. (1965). A Pleistocene phytogeographical sketch of the Pacific Northwest and Alaska. In The quaternary of the United States (pp. 469–483). Princeton: Princeton University Press.Google Scholar
  58. Hilfiker, K., Gugerli, F., Schütz, J. P., Rotach, P., & Holderegger, R. (2004). Low RAPD variation and female-biased sex ratio indicate genetic drift in small populations of the dioecious conifer Taxus baccata in Switzerland. Conservation Genetics, 5(3), 357–365.CrossRefGoogle Scholar
  59. Hillis, D. M., Moritz, C., Mable, B. K., & Meyer, A. (Eds.). (1996). Molecular systematics (2nd ed.). Sunderland, MA: Sinauer Associates, Inc.Google Scholar
  60. Hong, Y. P., Hipkins, V. D., & Strauss, S. H. (1993). Chloroplast DNA diversity among trees, populations and species in the California closed-cone pines (Pinus radiata, Pinus muricata and Pinus attenuata). Genetics, 135(4), 1187–1196.PubMedPubMedCentralGoogle Scholar
  61. Jaramillo-Correa, J. P., Beaulieu, J., & Bousquet, J. (2001). Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Molecular Ecology, 10(11), 2729–2740.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jaramillo-Correa, J. P., Beaulieu, J., Ledig, F. T., & Bousquet, J. (2006). Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Molecular Ecology, 15(10), 2787–2800.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Jardón-Barbolla, L., Delgado-Valerio, P., Geada-López, G., Vázquez-Lobo, A., & Piñero, D. (2011). Phylogeography of Pinus subsection Australes in the Caribbean basin. Annals of Botany, 107(2), 229–241.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jones, F. A., Hamrick, J. L., Peterson, C. J., & Squiers, E. R. (2006). Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Molecular Ecology, 15(3), 851–861.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jorgensen, S. M., & Hamrick, J. L. (1997). Biogeography and population genetics of whitebark pine, Pinus albicaulis. Canadian Journal of Forest Research, 27(10), 1574–1585.CrossRefGoogle Scholar
  66. Khasa, D. P., Jaramillo-Correa, J. P., Jaquish, B., & Bousquet, J. (2006). Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 15(13), 3907–3918.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kim, Z. S., Lee, S. W., & Hwang, J. W. (1997). Genetic diversity and structure of natural populations of Pinus thunbergii in Korea. Silvae Genetica, 46(2), 120–123.Google Scholar
  68. Kim, Z. S., Hwang, J. W., Lee, S. W., Yang, C., & Gorovoy, P. G. (2005). Genetic variation of Korean Pine (Pinus koraiensis Sieb. et Zucc.) at allozyme and RAPD markers in Korea, China and Russia. Silvae Genetica, 54(4–5), 235–245.CrossRefGoogle Scholar
  69. Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.CrossRefGoogle Scholar
  70. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  71. King, J. L., & Jukes, T. H. (1969). Non-Darwinian evolution. Science, 164, 788–797.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Klumpp, R., & Dhar, A. (2011). Genetic variation of Taxus baccata L populations in the Eastern Alps and its implications for conservation management. Scandinavian Journal of Forest Research, 26(4), 294–304.CrossRefGoogle Scholar
  73. Korol, L., Shklar, E., & Schiller, G. (2002). Diversity among circum-Mediterranean populations of Aleppo pine and differentiation from Brutia pine in their isoenzymes: Additional results. Silvae Genetica, 51(1), 35–41.Google Scholar
  74. Koski, V. (1971). Embryonic lethals of Picea abies and Pinus sylvestris. Communicationes Instituti Forestalis Fenniae, 75, 1–30.Google Scholar
  75. Lambeth, C., Lee, B. C., O’Malley, D., & Wheeler, N. (2001). Polymix breeding with parental analysis of progeny: An alternative to full-sib breeding and testing. Theoretical and Applied Genetics, 103(6–7), 930–943.CrossRefGoogle Scholar
  76. Lanner, R. M. (1966). Needed: A new approach to the study of pollen dispersion. Silvae Genetica, 15, 50–52.Google Scholar
  77. Ledig, F. T. (1998). Genetic variation in Pinus. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 251–280). Cambridge, UK: Cambridge University Press.Google Scholar
  78. Ledig, F. T., & Conkle, M. T. (1983). Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution, 37, 79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Ledig, F. T., Jacob-Cervantes, V., Hodgskiss, P. D., & Eguiluz-Piedra, T. (1997). Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. Evolution, 51, 1815–1827.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ledig, F. T., Conkle, M. T., Bermejo-Velazquez, B., Eguiluz-Piedra, T., Hodgskiss, P. D., Johnson, D. R., & Dvorak, W. S. (1999). Evidence for an extreme bottleneck in a rare Mexican pinyon: Genetic diversity, disequilibrium, and the mating system in Pinus maximartinezii. Evolution, 53, 91–99.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ledig, F. T., Capó-Arteaga, M. A., Hodgskiss, P. D., Sbay, H., Flores-López, C., Conkle, M. T., & Bermejo-Velázquez, B. (2001). Genetic diversity and the mating system of a rare Mexican piñon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae). American Journal of Botany, 88(11), 1977–1987.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ledig, F. T., Hodgskiss, P. D., & Johnson, D. R. (2006a). Genetic diversity and seed production in Santa Lucia fir (Abies bracteata), a relict of the Miocene broadleaved evergreen forest. Conservation Genetics, 7(3), 383–398.CrossRefGoogle Scholar
  83. Ledig, F. T., Hodgskiss, P. D., & Johnson, D. R. (2006b). The structure of genetic diversity in Engelmann spruce and a comparison with blue spruce. Botany, 84(12), 1806–1828.Google Scholar
  84. Lee, S. W., Choi, W. Y., Kim, W. W., & Kim, Z. S. (2000). Genetic variation of Taxus cuspidata Sieb. Et Zucc. In Korea. Silvae Genetica, 49(3), 124–129.Google Scholar
  85. Lee, S. W., Ledig, F. T., & Johnson, D. R. (2002). Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. American Journal of Botany, 89(4), 566–577.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lendvay, B., Höhn, M., Brodbeck, S., Mîndrescu, M., & Gugerli, F. (2014). Genetic structure in Pinus cembra from the Carpathian Mountains inferred from nuclear and chloroplast microsatellites confirms post-glacial range contraction and identifies introduced individuals. Tree Genetics and Genomes, 10(5), 1419–1433.CrossRefGoogle Scholar
  87. Lesser, M. R., Parchman, T. L., & Jackson, S. T. (2013). Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations. Molecular Ecology, 22(10), 2640–2652.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Lewandowski, A., & Burczyk, J. (2000). Mating system and genetic diversity in natural populations of European larch (Larix decidua) and stone pine (Pinus cembra) located at higher elevations. Silvae Genetica, 49(3), 158–160.Google Scholar
  89. Lewandowski, A., Burczyk, J., & Mejnartowicz, L. (1995). Genetic structure of English yew (Taxus baccata L) in the Wierzchlas reserve: Implications for genetic conservation. Forest Ecology and Management, 73(1), 221–227.CrossRefGoogle Scholar
  90. Loveless, M. D., & Hamrick, J. L. (1984). Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15, 65–95.CrossRefGoogle Scholar
  91. Lu, X., Xu, H., Li, Z., Shang, H., Adams, R. P., & Mao, K. (2014a). Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers. Biochemical Genetics, 52(3–4), 181–202.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mariette, S., Chagné, D., Lézier, C., Pastuszka, P., Raffin, A., Plomion, C., & Kremer, A. (2001). Genetic diversity within and among Pinus pinaster populations: Comparison between AFLP and microsatellite markers. Heredity, 86(4), 469–479.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Marquardt, P. E., & Epperson, B. K. (2004). Spatial and population genetic structure of microsatellites in white pine. Molecular Ecology, 13(11), 3305–3315.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Medri, C., Ruas, P. M., Higa, A. R., Murakami, M., & de Fatima Ruas, C. (2003). Effects of forest management on the genetic diversity in a population of Araucaria angustifolia (bert.) O Kuntze. Silvae Genetica, 52(5–6), 202–205.Google Scholar
  95. Millar, C. I., Strauss, S. H., Conkle, M. T., & Westfall, R. D. (1988). Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Systematic Botany, 13, 351–370.CrossRefGoogle Scholar
  96. Mitton, J. B. (1992). The dynamic mating systems of conifers. New Forests, 6(1–4), 197–216.CrossRefGoogle Scholar
  97. Mitton, J. B., Kreiser, B. R., & Latta, R. G. (2000). Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology, 9(1), 91–97.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Myburg, H., & Harris, S. A. (1997). Genetic variation across the natural distribution of the south east Asian pine, Pinus kesiya Royle ex Gordon (Pinaceae). Silvae Genetica, 46(5), 295–301.Google Scholar
  99. Myers, E. R., Chung, M. Y., & Chung, M. G. (2007). Genetic diversity and spatial genetic structure of Pinus strobus (Pinaceae) across an island landscape inferred from allozyme and cpDNA markers. Plant Systematics and Evolution, 264(1–2), 15–30.CrossRefGoogle Scholar
  100. Nasri, N., Bojovic, S., Vendramin, G. G., & Fady, B. (2008). Population genetic structure of the relict Serbian spruce, Picea omorika, inferred from plastid DNA. Plant Systematics and Evolution, 271(1–2), 1–7.CrossRefGoogle Scholar
  101. Naydenov, K. D., Tremblay, F. M., Alexandrov, A., & Fenton, N. J. (2005). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochemical Systematics and Ecology, 33, 1226–1245.CrossRefGoogle Scholar
  102. Naydenov, K. D., Alexandrov, A., Matevski, V., Vasilevski, K., Naydenov, M. K., Gyuleva, V., Carcaillet, C., Wahid, N., & Kamary, S. (2014). Range-wide genetic structure of maritime pine predates the last glacial maximum: Evidence from nuclear DNA. Hereditas, 151(1), 1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Neale, D. B. (1985). Genetic implications of shelterwood regeneration of Douglas-fir in Southwest Oregon. Forest Science, 31(4), 995–1005.Google Scholar
  104. Neale, D. B., & Sederoff, R. R. (1989). Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theoretical and Applied Genetics, 77(2), 212–216.PubMedPubMedCentralGoogle Scholar
  105. Neale, D. B., Wheeler, N. C., & Allard, R. W. (1986). Paternal inheritance of chloroplast DNA in Douglas-fir. Canadian Journal of Forest Research, 16(5), 1152–1154.Google Scholar
  106. Neale, D. B., Marshall, K. A., & Sederoff, R. R. (1989). Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proceedings of the National Academy of Sciences, 86(23), 9347–9349.Google Scholar
  107. Neale, D. B., Marshall, K. A., & Harry, D. E. (1991). Inheritance of chloroplast and mitochondrial DNA in incense-cedar (Calocedrus decurrens). Canadian Journal of Forest Research, 21(5), 717–720.Google Scholar
  108. Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292.CrossRefGoogle Scholar
  109. Nei, M. (2005). Selectionism and neutralism in molecular evolution. Molecular Biology and Evolution, 22, 2318–2342.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nei, M. (2013). Mutation-driven evolution. Oxford: Oxford University Press.Google Scholar
  111. Nei, M., Suzuki, Y., & Nozawa, M. (2010). The neutral theory of molecular evolution in the genomic era. Annual Review of Genomics and Human Genetics, 11, 265–289.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Nevo, E., Beiles, A., & Ben-Shlomo, R. (1984). The evolutionary significance of genetic diversity: Ecological, demographic and life history correlates. In Evolutionary dynamics of genetic diversity (pp. 13–213). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  113. Ohta, T. (2002). Near-neutrality in evolution of genes and gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16134–16137. https://doi.org/10.1073/pnas.252626899. PMC 138577. PMID 12461171.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Oline, D. K., Mitton, J. B., & Grant, M. C. (2000). Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). Evolution, 54(5), 1813–1819.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Pandey, M., & Rajora, O. P. (2012). Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer-eastern white cedar (Thuja occidentalis L). BMC Evolutionary Biology, 12(1), 1–14.CrossRefGoogle Scholar
  116. Panetsos, K. P., Aravanopoulos, F. A., & Scaltsoyiannes, A. (1998). Genetic variation of Pinus brutia from islands of the northeastern Aegean Sea. Silvae Genetica, 47(2), 115–119.Google Scholar
  117. Pastorino, M. J., & Gallo, L. A. (2009). Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. Forest Ecology and Management, 257(12), 2350–2358.CrossRefGoogle Scholar
  118. Peakall, R., Ebert, D., Scott, L. J., Meagher, P. F., & Offord, C. A. (2003). Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology, 12(9), 2331–2343.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Petit, R. J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D., & Vendramin, G. G. (2005). Invited review: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 14(3), 689–701.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Plessas, M. E., & Strauss, S. H. (1986). Allozyme differentiation among populations, stands, and cohorts in Monterey pine. Canadian Journal of Forest Research, 16(6), 1155–1164.CrossRefGoogle Scholar
  121. Potter, K. M., Jetton, R. M., Dvorak, W. S., Hipkins, V. D., Rhea, R., & Whittier, W. A. (2012). Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conservation Genetics, 13(2), 475–498.CrossRefGoogle Scholar
  122. Prus-Glowacki, W., & Bernard, E. (1994). Allozyme variation in populations of Pinus sylvestris L from a 1912 provenance trial in Pulawy (Poland). Silvae Genetica, 43(2), 132–137.Google Scholar
  123. Prus-Glowacki, W., & Stephan, B. R. (1994). Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica, 43(1), 7–13.Google Scholar
  124. Pye, M. G., Henwood, M. J., & Gadek, P. A. (2009). Differential levels of genetic diversity and divergence among populations of an ancient Australian rainforest conifer, Araucaria cunninghamii. Plant Systematics and Evolution, 277(3–4), 173–185.CrossRefGoogle Scholar
  125. Radu, R. G., Curtu, L. A., & Spârchez, G. (2014). Genetic diversity of Norway spruce [Picea abies (L) Karst.] in Romanian Carpathians. Annals of Forest Research, 57, 1):19–1):29.Google Scholar
  126. Rajora, O. P., & Pluhar, S. A. (2003). Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theoretical and Applied Genetics, 106(7), 1203–1212.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Rajora, O. P., DeVerno, L., Mosseler, A., & Innes, D. J. (1998). Genetic diversity and population structure of disjunct Newfoundland and Central Ontario populations of eastern white pine (Pinus strobus). Canadian Journal of Botany, 76(3), 500–508.CrossRefGoogle Scholar
  128. Rajora, O. P., Mosseler, A., & Major, J. E. (2000a). Indicators of population viability in red spruce, Picea rubens. II genetic diversity, population structure, and mating behavior. Canadian Journal of Botany, 78(7), 941–956.CrossRefGoogle Scholar
  129. Sáenz-Romero, C., & Tapia-Olivares, B. L. (2003). Pinus oocarpa isoenzymatic variation along an altitudinal gradient in Michoacán, México. Silvae Genetica, 52(5–6), 237–240.Google Scholar
  130. Saenz-Romero, C., Guries, R. P., & Monk, A. I. (2001). Landscape genetic structure of Pinus banksiana: Allozyme variation. Canadian Journal of Botany, 79(8), 871–878.CrossRefGoogle Scholar
  131. Sanchez, M., Ingrouille, M. J., Cowan, R. S., Hamilton, M. A., & Fay, M. F. (2014). Spatial structure and genetic diversity of natural populations of the Caribbean pine, Pinus caribaea var. bahamensis (Pinaceae), in the Bahaman archipelago. Botanical Journal of the Linnean Society, 174(3), 359–383.CrossRefGoogle Scholar
  132. Savolainen, O., & Kärkkäinen, K. (1992). Effect of forest management on gene pools. New Forests, 6(1–4), 329–345.CrossRefGoogle Scholar
  133. Schemske, D. W., & Lande, R. (1985). The evolution of self-fertilization and inbreeding depression in plants. II empirical observations. Evolution, 39, 41–52.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Schmidtling, R. C., & Hipkins, V. (1998). Genetic diversity in longleaf pine (Pinus palustris): Influence of historical and prehistorical events. Canadian Journal of Forest Research, 28(8), 1135–1145.CrossRefGoogle Scholar
  135. Schmidtling, R. C., Carroll, E., & LaFarge, T. (1999). Allozyme diversity of selected and natural loblolly pine populations. Silvae Genetics, 48(1), 35–45.Google Scholar
  136. Schuster, W. S., & Mitton, J. B. (2000). Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity, 84(3), 348–361.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Scotti, I., Vendramin, G. G., Matteotti, L. S., Scarponi, C., Sari-Gorla, M., & Binelli, G. (2000). Postglacial recolonization routes for Picea abies K in Italy as suggested by the analysis of sequence-characterized amplified region (SCAR) markers. Molecular Ecology, 9(6), 699–708.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Semerikov, V. L., & Lascoux, M. (1999). Genetic relationship among Eurasian and American Larix species based on allozymes. Heredity, 83(1), 62–70.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Shapcott, A. (1997). Population genetics of the long-lived Huon pine Lagarostrobos franklinii: An endemic Tasmanian temperate rainforest tree. Biological Conservation, 80(2), 169–179.CrossRefGoogle Scholar
  140. Shea, K. L., & Furnier, G. R. (2002). Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae). American Journal of Botany, 89(5), 783–791.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Simon, J.-P., Bergeron, Y., & Gagnon, D. (1986). Isozyme uniformity in populations of red pine (Pinus resinosa) in the Abitibi region, Quebec. Canadian Journal of Forest Research, 16, 1133–1135.CrossRefGoogle Scholar
  142. Sinclair, W. T., Morman, J. D., & Ennos, R. A. (1998). Multiple origins for scots pine (Pinus sylvestris L) in Scotland: Evidence from mitochondrial DNA variation. Heredity, 80(2), 233–240.CrossRefGoogle Scholar
  143. Slavov, G. T., Howe, G. T., & Adams, W. T. (2005). Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Canadian Journal of Forest Research, 35(7), 1592–1603.CrossRefGoogle Scholar
  144. Sorensen, F. (1969). Embryonic genetic load in coastal Douglas-fir, Pseudotsuga menziesii var. menziesii. The American Naturalist, 103, 389–398.CrossRefGoogle Scholar
  145. Sorensen, F. C. (1971). Estimate of self-fertility in coastal Douglas-fir from inbreeding studies. Silvae Genetica, 20, 115–120.Google Scholar
  146. Sorensen, F., & Miles, R. S. (1974). Self-pollination effects on Douglas-fir and ponderosa pine seeds and seedlings. Silvae Genetica, 23, 135–138.Google Scholar
  147. Souza, M. I. F. D., Salgueiro, F., Carnavale-Bottino, M., Félix, D. B., Alves-Ferreira, M., Bittencourt, J. V. M., & Margis, R. (2009). Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O Kuntze relict populations. Genetics and Molecular Biology, 32(3), 546–556.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Stefenon, V. M., Steiner, N., Guerra, M. P., & Nodari, R. O. (2009). Integrating approaches towards the conservation of forest genetic resources: A case study of Araucaria angustifolia. Biodiversity and Conservation, 18(9), 2433–2448.CrossRefGoogle Scholar
  149. Steinitz, O., Robledo-Arnuncio, J. J., & Nathan, R. (2012). Effects of forest plantations on the genetic composition of conspecific native Aleppo pine populations. Molecular Ecology, 21(2), 300–313.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Stoehr, M. U., & El-Kassaby, Y. A. (1997). Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. Theoretical and Applied Genetics, 94(1), 83–90.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Stoehr, M. U., Orvar, B. L., Vo, T. M., Gawley, J. R., Webber, J. E., & Newton, C. H. (1998). Application of a chloroplast DNA marker in seed orchard management evaluations of Douglas-fir. Canadian Journal of Forest Research, 28(2), 187–195.CrossRefGoogle Scholar
  152. Strong, W. L. (2010). Pinus contorta var. yukonensis var. nov. (Pinaceae) from South–Central Yukon, Canada. Nordic Journal of Botany, 28(4), 448–452.CrossRefGoogle Scholar
  153. Strong, W. L., & Hills, L. V. (2013). Holocene migration of lodgepole pine (Pinus contorta var. latifolia) in Southern Yukon, Canada. The Holocene, 23(9), 1340–1349.CrossRefGoogle Scholar
  154. Szmidt, A. E., Wang, X. R., & Changtragoon, S. (1996a). Contrasting patterns of genetic diversity in two tropical pines: Pinus kesiya (Royle ex Gordon) and P. merkusii (Jungh et De Vriese). Theoretical and Applied Genetics, 92(3–4), 436–441.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Szmidt, A. E., Wang, X. R., & Lu, M. Z. (1996b). Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L) using haploid tissue analysis. Heredity, 76(4), 412–420.CrossRefGoogle Scholar
  156. Tang, S., Dai, W., Li, M., Zhang, Y., Geng, Y., Wang, L., & Zhong, Y. (2008). Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica, 133(1), 21–30.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Tani, N., Maruyama, K., Tomaru, N., Uchida, K., Araki, M., Tsumura, Y., Yoshimaru, H., & Ohba, K. (2003). Genetic diversity of nuclear and mitochondrial genomes in Pinus parviflora Sieb. & Zucc.(Pinaceae) populations. Heredity, 91(5), 510–518.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Terrab, A., Paun, O., Talavera, S., Tremetsberger, K., Arista, M., & Stuessy, T. F. (2006). Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. American Journal of Botany, 93(9), 1274–1280.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Thomas, J. C., & Bond, W. J. (1997). Genetic variation in an endangered cedar (Widdringtonia cedarbergensis) versus two congeneric species. South African Journal of Botany, 63(3), 133–140.CrossRefGoogle Scholar
  160. Tian, S., Luo, L. C., Ge, S., & Zhang, Z. Y. (2008). Clear genetic structure of Pinus kwangtungensis (Pinaceae) revealed by a plastid DNA fragment with a novel minisatellite. Annals of Botany, 102(1), 69–78.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tollefsrud, M. M., Sønstebø, J. H., Brochmann, C., Johnsen, Ø., Skrøppa, T., & Vendramin, G. G. (2009). Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity, 102(6), 549–562.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Uchida, K., Tomaru, N., Tsumura, Y., Takahashi, C., & Ohba, K. (1993). Allozyme variation in plus-tree of Hinoki, Chamaecyparis obtusa, selected from artificial stands. Japan J Breed, 43(4), 485–494.CrossRefGoogle Scholar
  163. Vendramin, G. G., Degen, B., Petit, R. J., Anzidei, M., Madaghiele, A., & Ziegenhagen, B. (1999). High level of variation at Abies alba chloroplast microsatellite loci in Europe. Molecular Ecology, 8(7), 1117–1126.CrossRefGoogle Scholar
  164. Wahid, N., González-Martínez, S. C., El Hadrami, I., & Boulli, A. (2004). Genetic structure and variability of natural populations of maritime pine (Pinus pinaster Aiton) in Morocco. Silvae Genetica, 53(3), 93–98.CrossRefGoogle Scholar
  165. Walter, R., & Epperson, B. K. (2001). Geographic pattern of genetic variation in Pinus resinosa: Area of greatest diversity is not the origin of postglacial populations. Molecular Ecology, 10(1), 103–111.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Walter, R., & Epperson, B. K. (2005). Geographic pattern of genetic diversity in Pinus resinosa: Contact zone between descendants of glacial refugia. American Journal of Botany, 92(1), 92–100.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wang, H. W., & Ge, S. (2006). Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology, 15(13), 4109–4122.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Wang, Z. M., & Nagasaka, K. (1997). Allozyme variation in natural populations of Picea glehnii in Hokkaido, Japan. Heredity, 78(5), 470–475.CrossRefGoogle Scholar
  169. Wang, X. R., Lindgren, D., Szmidt, A. E., & Yazdani, R. (1991). Pollen migration into a seed orchard of Pinus sylvestris L and the methods of its estimation using allozyme markers. Scandinavian Journal of Forest Research, 6(1–4), 379–385.CrossRefGoogle Scholar
  170. Wang, Z. S., Sun, H. Q., Wang, H. W., & Ge, S. (2010b). Isolation and characterization of 50 nuclear microsatellite markers for Cathaya argyrophylla, a Chinese endemic conifer. American Journal of Botany, 97(11), e117–e120.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Wheeler, N. C. (1989). Characterization of select pedigrees for genetic load. Weyerhaeuser For Res Tech Rep 050-3210/26) 13 pp.Google Scholar
  172. Wheeler, N. C., & Guries, R. P. (1982a). Biogeography of lodgepole pine. Canadian Journal of Botany, 60(9), 1805–1814.CrossRefGoogle Scholar
  173. Wheeler, N. C., & Guries, R. P. (1982b). Population structure, genic diversity, and morphological variation in Pinus contorta Dougl. Canadian Journal of Forest Research, 12(3), 595–606.CrossRefGoogle Scholar
  174. Wheeler, N. C., & Guries, R. P. (1987). A quantitative measure of introgression between lodgepole and jack pines. Canadian Journal of Botany, 65(9), 1876–1885.CrossRefGoogle Scholar
  175. Wheeler, N. C., & Jech, K. S. (1992). The use of electrophoretic markers in seed orchard research. New Forests, 6, 311–328.CrossRefGoogle Scholar
  176. Wheeler, N. C., Guries, R. P., & O’Malley, D. M. (1983). Biosystematics of the genus Pinus, subsection Contortae. Biochemical Systematics and Ecology, 11(4), 333–340.CrossRefGoogle Scholar
  177. Wheeler, N. C., Jech, K. S., Masters, S. A., O’Brien, C. J., Timmons, D. W., Stonecypher, R. W., & Lupkes, A. (1995a). Genetic variation and parameter estimates in Taxus brevifolia (Pacific Yew). Canadian Journal of Forest Research, 25(12), 1913–1927.CrossRefGoogle Scholar
  178. Wheeler, N. C., Jech, K. S., & Rose, P. (1995b). Genetic variation in Weyerhaeuser’s natural and domesticated Douglas-fir populations: I Allozyme diversity (pp. 1–27). Weyerhaeuser Co For Res Tech. Rep. No. 51-1206.Google Scholar
  179. Wheeler, N., Wegrzyn, J., & Harry, D. (2011). Genetic markers. [Online Learning Module]. Genomics in Tree Breeding and Forest Ecosystem Management, Conifer Translational Genomics Network. eXtension Foundation. Available at: www.extension.org/pages/60385/conifer-translational-genomics-network-online-module-6:-genetic-markers (verified 11/17/2017).
  180. Wheeler, N. C., Steiner, K. C., Schlarbaum, S. E., & Neale, D. B. (2015). The evolution of forest genetics and tree improvement research in the United States. Journal of Forestry, 113(5), 500–510.CrossRefGoogle Scholar
  181. White, T. L., Adams, W. T., & Neale, D. B. (2007). Forest genetics. Cambridge, MA: CABI Publishing.CrossRefGoogle Scholar
  182. Whitlock, M. C., & McCauley, D. E. (1999). Indirect measures of gene flow and migration: FST ≠ 1/(4 nm + 1). Heredity, 82(2), 117–125.PubMedCrossRefPubMedCentralGoogle Scholar
  183. Whittle, C. A., & Johnston, M. O. (2002). Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Molecular Biology and Evolution, 19(6), 938–949.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wilcox, M. D. (1983). Inbreeding depression and genetic variances estimated from self- and cross-pollinated families of Pinus radiata. Silvae Genetica, 32, 89–96.Google Scholar
  185. Williams, C. G. (2009). Conifer reproductive biology. Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  186. Wright, S. (1929). The evolution of dominance. American Naturalist, 63(689), 556–561.CrossRefGoogle Scholar
  187. Wright, S. (1951). The genetical structure of species. Annals of Eugenics, 15, 323–354.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Wu, J., Krutovskii, K. V., & Strauss, S. H. (1998). Abundant mitochondrial genome diversity, population differentiation and convergent evolution in pines. Genetics, 150(4), 1605–1614.PubMedPubMedCentralGoogle Scholar
  189. Wu, J., Krutovskii, K. V., & Strauss, S. H. (1999). Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome, 42(89), 893–908.CrossRefGoogle Scholar
  190. Yang, R. C., & Yeh, F. C. (1995). Patterns of gene flow and geographic structure in Pinus contorta Dougl. Forest Genetics, 2, 65–75.Google Scholar
  191. Yeh, F. C., & El-Kassaby, Y. A. (1980). Enzyme variation in natural populations of Sitka spruce (Picea sitchensis). 1. Genetic variation patterns among trees from 10 IUFRO provenances. Canadian Journal of Forest Research, 10(3), 415–422.CrossRefGoogle Scholar
  192. Yeh, F. C., & Layton, C. (1979). The organization of genetic variability in central and marginal populations of lodgepole pine (Pinus contorta spp. latifolia). Canadian Journal of Genetics and Cytology, 21(4), 487–503.CrossRefGoogle Scholar
  193. Yeh, F. C., Khalil, M. A. K., El-Kassaby, Y. A., & Trust, D. C. (1986). Allozyme variation in Picea mariana from Newfoundland: Genetic diversity, population structure, and analysis of differentiation. Canadian Journal of Forest Research, 16(4), 713–720.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations