Phenotypic Variation in Natural Populations

  • David B. Neale
  • Nicholas C. Wheeler


The recognition and subsequent study of genetic variation in conifers began with the observation that trees varied in observable or measurable (phenotypic) traits and that variation was often distributed geographically. Virtually everything we learned about genetic variation (genotypic) in forest trees before the development of allozymes, genetic markers, and genome sequences derived from the study of phenotypic variation among and within natural and domesticated populations of trees. The predominant research approach for such studies has been the common garden trial, which provides an objective means for dissecting observable phenotypic variation into its component effects, genotypic and environmental, as described by the simple equation P = G + E (phenotype = genotype + environment; Fig. 8.1). In forestry, common garden studies in which accessions from multiple natural populations of a single species are evaluated within the same test site are known as provenance trials. Common garden studies that evaluate pedigreed accessions from domesticated populations, usually across a narrower geographic area, are referred to as genetic tests or progeny tests. Here we are concerned only with the study of genetic variation in natural populations, though genetic testing has revealed a great deal about variation in phenotypic traits and the genetic basis of that variation. Historically treatments of this topic have frequently used the misleading term “geographic variation” to describe patterns of phenotypic variation across the landscape. Since we are not interested in variation in geography, but in biological variation shaped by natural selection driven by climatic factors associated with geography, the choice of “phenotypic variation” in the chapter title more accurately reflects the contents discussed here.


  1. Alberto, F. J., Aitken, S. N., Alia, R., Gonzalez-Martinez, S. C., Hanninen, H., Kremer, A., Lefevre, F., Lenormand, T., Yeaman, S., Whetten, R., & Savolainen, O. (2013). Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645–1661. Scholar
  2. Bansal, S., Harrington, C. A., Gould, P. J., & St Clair, J. B. (2015a). Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Global Change Biology, 21, 947–958.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bansal, S., St Clair, J. B., Harrington, C. A., & Gould, P. J. (2015b). Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): Environmental and genetic considerations. Global Change Biology, 21, 3814–3826.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bansal, S., Harrington, C. A., & St Clair, J. B. (2016). Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness. Ecology and Evolution, 6, 2074. Scholar
  5. Bates, C. G. (1930). The frost hardiness of geographic strains of Norway pine. Journal of Forestry, 28, 327–333.Google Scholar
  6. Beaulieu, J., & Rainville, A. (2005). Adaptation to climate change: Genetic variation is both a short- and a long-term solution. The Forestry Chronicle, 81(5), 704–709.CrossRefGoogle Scholar
  7. Bergin, D. O., & Kimberley, M. O. (1992). Provenance variation in Podocarpus totara. New Zealand Journal of Ecology, 16(1), 5–13.Google Scholar
  8. Bergin, D. O., Kimberley, M. O., & Low, C. B. (2008). Provenance variation in Podocarpus totara (D. Don): Growth, tree form and wood density on a coastal site in the north of natural range, New Zealand. Forest Ecology and Management, 255, 1367–1378.CrossRefGoogle Scholar
  9. Bi, H., Li, R., Wu, Z., Huang, Q., Liu, Q., Zhou, Y., & Li, Y. (2013). Early performance of Pinus radiata provenances in the earthquake-ravaged dry river valley area of Sichuan, southwest China. Journal of Forestry Research, 24(4), 619–632.CrossRefGoogle Scholar
  10. Blada, I., & Popescu, F. (2007). Swiss stone pine provenance experiment in Romania: II Variation in growth and branching traits to age 14. Silvae Genetica, 56(3–4), 148–158.CrossRefGoogle Scholar
  11. Blouin, D., Beaulieu, J., Daoust, G., & Poliquin, J. (1994). Wood quality of Norway spruce grown in plantations in Quebec. Wood and Fiber Science, 26(3), 342–353.Google Scholar
  12. Bowen, M. R., & Whitmore, T. C. (1980). Agathis - a genus of fast growing rain forest conifers. The Commonwealth Forestry Review, 59(3), 307–310.Google Scholar
  13. Breidenstein, J., Bastien, J.-C., & Roman-Amat, B. (1990, August 20–24). Douglas-fir range-wide variation results from the IUFRO data base. P. 2.13-1.26. In Proceedings of joint meeting Western Forest Genetics Association and IUFRO Working Parties S2.02-05, 06,12 and 14 – Douglas-fir, contorta pine, Sitka spruce, and Abies breeding and genetic resources, Olympia, WA. Weyerhaeuser Co., Federal Way, WA.Google Scholar
  14. Burley, J., & Nikles, D. G. (1973). Tropical provenance and progeny research and international cooperation. In Proceedings of joint workshop IUFRO in Nairobi, Kenya. Oxford, UK: Commonwealth Forestry Institute.Google Scholar
  15. CAMCORE Cooperative. (2000). Conservation and testing of tropical and subtropical forest tree species by the CAMCORE Cooperative. Raleigh: College of Natural Resources, NCSU. Scholar
  16. Campbell, R. K. (1979). Genecology of Douglas-fir in a watershed in the Oregon Cascades. Ecology, 60(5), 1036–1050.CrossRefGoogle Scholar
  17. Campbell, R. K. (1986). Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genetica, 35(2–3), 85–96.Google Scholar
  18. Campbell, R. K. (1991). Soils, seed-zone maps, and physiography: Guidelines for seed transfer of Douglas-fir in Southwestern Oregon. Forest Science, 37(4), 973–986.Google Scholar
  19. Campbell, R. K., & Sorensen, F. C. (1978). Effect of test environment on expression of clines and on delineation of seed zones in Douglas-fir. Theoretical and Applied Genetics, 51, 223–246.CrossRefGoogle Scholar
  20. Campbell, R. K., & Sugano, A. I. (1979). Genecology of bud-burst phenology in Douglas-fir: Response to flushing temperature and chilling. Botanical Gazette, 140, 223–231.CrossRefGoogle Scholar
  21. Campbell, R. K., & Sugano, A. I. (1993). Genetic variation and seed zones of Douglas-fir in the Siskiyou National Forest. USDA Forest Service research paper PNW-RP-461.Google Scholar
  22. Castellanos-Acuna, D., Saenz-Romero, C., Lindig-Cisneros, R. A., Sanchez-Vargas, N. M., Lobbit, P., & Montero-Castro, J. C. (2013). Revista Chapingo Serie Ciencias Forestales y del Ambiente. doi:
  23. Chalupka, W., Mejnartowicz, L., & Lewandoswski, A. (2008). Reconstitution of a lost forest tree population: A case study of Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 255, 2103–2108.CrossRefGoogle Scholar
  24. Ching, K. K. (1965). Early growth of Douglas-fir in a reciprocal planting (Forest Research Laboratory research paper 3). Corvallis: Oregon State University.Google Scholar
  25. Clausen, J., Keck, D. D., & Hiesey, W. M. (1940). Experimental studies on the nature of species. 1. The effect of varied environments on western North American Plants (Carnegie Institution of Washington publication no. 520). Washington, D.C.: Carnegie Institution of Washington.Google Scholar
  26. Conkle, M. T., & Critchfield, W. B. (1988). Genetic variation and hybridization of ponderosa pine. In D. M. Baumgarner & J. E. Lotan (Eds.), Proceedings of ponderosa pine – The Species and its management symposium (pp. 27–43). Pullman, WA: Washington State University.Google Scholar
  27. Cordoba-Rodriguez, D., Vargas-Hernandez, J. J., Lopez-Upton, J., & Munoz-Orozco, A. (2011). Root growth in young plants of Pinus pinceana Gordon in response to soil moisture. Agrociencia, 45, 493–506.Google Scholar
  28. Correla, I., Alia, R., Yan, W., David, T., Aguiar, A., & Almeida, M. H. (2010). Genotype environment interactions in Pinus pinaster at age 10 in a multi-environment trial in Portugal: A maximum likelihood approach. Annals of Forest Science, 67(6), 612. Scholar
  29. Costa e Silva, J., & Graudal, L. (2008). Evaluation of an international series of Pinus kesiya provenance trials for growth and wood quality traits. Forest Ecology and Management, 255, 3477–3488.CrossRefGoogle Scholar
  30. Court-Picon, M., Gadbin-Henry, C., Guibal, F., & Roux, M. (2004). Dendrometry and morphometry of Pinus pinea L. in lower Provence (France): Adaptability and variability of provenances. Forest Ecology and Management, 194, 319–333.CrossRefGoogle Scholar
  31. Cregg, B. M., Olivas-Garcia, J. M., & Hennessey, T. C. (2000). Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains. Canadian Journal of Forest Research, 30, 428–439.CrossRefGoogle Scholar
  32. Critchfield, W. B. (1957). Geographic variation in Pinus contorta (Maria Moors Cabot Foundation, Publication Number 3). Cambridge, MA: Harvard University. 118 p.Google Scholar
  33. De La Mata, R., & Zas, R. (2010). Performance of maritime pine Spanish Mediterranean provenances at young ages in transitional region between Atlantic and Mediterranean climates in NW Spain. Silvae Genetica, 59(1), 8–17.CrossRefGoogle Scholar
  34. Dorman, K. W. (1975). The genetics and breeding of Southern pines (USDA Forest Service Agriculture Handbook No. 471). Washington, D.C.: U.S. Department of Agriculture, Forest Service.Google Scholar
  35. Dvorak, W. S., Hodge, G. R., & Kietzka, J. E. (2007). Genetic variation in survival, growth, and stem form of Pinus leiophylla in Brazil and South Africa and provenance resistance to pitch canker. Southern Hemisphere Forestry Journal, 69(3), 125–135.CrossRefGoogle Scholar
  36. Gallis, A. T., Doulis, A. G., & Papageorgiou, A. C. (2007). Variability of cortex terpene composition in Cupressus sempervirens L. provenances grown in Crete, Greece. Silvae Genetica, 56(6), 294–299.CrossRefGoogle Scholar
  37. Gapare, W. J., Ivkovic, M., Dutkowski, G. W., Spencer, D. J., Buxton, P., & Wu, H. X. (2012). Genetic parameters and provenance variation of Pinus radiata D. Don. ‘Eldridge collection’ in Australia 1: Growth and form traits. Tree Genetics and Genomes, 8, 391–407.CrossRefGoogle Scholar
  38. Giertych, M. (1979). Summary of results on Scots pine (Pinus sylvestris L.) height growth in IUFRO provenance experiments. Silvae Genetica, 28, 136–152.Google Scholar
  39. Gömöry, D., Foffová, E., Kmeť, J., Longauer, R., & Romšáková, I. (2010). Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation. Acta Biologica Cracoviensia Series Botanica, 52(2), 42–49.Google Scholar
  40. Gould, P. J., Harrington, C. A., & Clair, J. B. S. (2011). Incorporating genetic variation into a model of budburst phenology of coast Douglas-fir (Pseudotsuga menziesii var. menziesii). Canadian Journal of Forest Research, 41, 139–150.CrossRefGoogle Scholar
  41. Gould, P. J., Harrington, C. A., & Clair, J. B. S. (2012). Growth phenology of coast Douglas-fir seed sources planted in diverse environments. Tree Physiology, 32, 1482–1496.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hansen, O. K., Nielsen, U. B., Edvardsen, O. M., Skulason, B., & Skage, J.-O. (2004). Nordic provenance trials with Abies lasiocarpa and Abies lasiocarpa var. arizonica: Three-year results. Scandinavian Journal of Forest Research, 19, 112–126.CrossRefGoogle Scholar
  43. Harfouche, A., Bahrman, N., Baradat, P., Guyon, J. P., Petit, R. J., & Kremer, A. (1999). Provenance hybridization in a diallel mating scheme of maritime pine (Pinus pinaster). II. Heterosis. Canadian Journal of Forest Research, 30, 10–16.CrossRefGoogle Scholar
  44. Hermann, R. K., & Lavender, D. P. (1968). Early growth of Douglas-fir from various altitudes and aspects in southern Oregon. Silvae Genetica, 17(4), 143–151.Google Scholar
  45. Hernandez-Serrano, A., Verdu, M., Santos-del-Blanco, L., Climent, J., Gonzalez-Martinez, S. C., & Pausas, J. G. (2014). Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany, 114, 571–577.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Heslop-Harrison, J. (1964). Forty years of genecology. Advances in Ecological Research, 2, 159–247.CrossRefGoogle Scholar
  47. Howe, G. T., Jayawickrama, K., Cherry, M., Johnson, G. R., & Wheeler, N. C. (2006). Breeding Douglas-fir. Plant Breeding Reviews, 27, 245.Google Scholar
  48. Huxley, J. (1938). Clines: An auxiliary taxonomic principle. Nature, London, 142, 219–220.CrossRefGoogle Scholar
  49. Illingworth, K. (1978). Study of lodgepole pine genotype-environment interaction. In Proceedings of IUFRO joint meeting of working parties: Douglas-fir provenances, lodgepole pine provenances, Sitka spruce provenances, and Abies provenances (pp. 151–158). Vancouver.Google Scholar
  50. Ilstedt, B., & Eriksson, G. (1986). Quality of intra- and inter-provenance families of Picea abies (L.) Karst. Scandinavian Journal of Forest Research, 1, 153–166.CrossRefGoogle Scholar
  51. Isaac-Renton, M. G., Roberts, D. R., Hamann, A., & Spiecker, H. (2014). Douglas-fir plantations in Europe: A retrospective test of assisted migration to address climate change. Global Change Biology, 20, 2607–2617. doi: 10:1111/gcb.12604.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Isik, F., Isik, K., & Lee, S. J. (1999). Genetic variation in Pinus brutia Ten. in Turkey: I. Growth, biomass and stem quality traits. Forest Genetics, 6(2), 89–99.Google Scholar
  53. Isik, F., Keskin, S., & McKeand, S. E. (2000). Provenance variation and provenance-site interaction in Pinus brutia Ten.: Consequences of defining breeding zones. Silvae Genetica, 49(4–5), 213–223.Google Scholar
  54. Jaquish, B.C. (1990, August 20–24). Geographic variation in ten-year height growth of interior Douglas-fir in British Columbia. P. 2.144–2.155. In: Proc. Joint meeting Western Forest Genetics Assoc. and IUFRO Working Parties S2.02-05, 06,12 and 14 – Douglas-fir, contorta pine, Sitka spruce, and Abies breeding and genetic resources, Olympia, WA. Weyerhaeuser Co., Federal Way, WA.Google Scholar
  55. Joyce, D. G., & Rehfeldt, G. E. (2013). Climatic niche, ecological genetics and impact of climate change on eastern white pine (Pinus strobus L.): Guidelines for land managers. Forest Ecology and Management, 295, 173–192.CrossRefGoogle Scholar
  56. Kapeller, S., Lexer, M. J., Gegurek, T., Hiebl, J., & Schueler, S. (2012). Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271, 46–57.CrossRefGoogle Scholar
  57. Karkkainen, K., Koski, V., & Savolainen, O. (1996). Geographical variation in the inbreeding depression of scots pine. Evolution, 50(1), 111–119.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Karlsson, B., Wellendorf, H., Roulund, H., & Werner, M. (2001). Genotype x trial interaction and stability across sites in 11 combined provenance and clone experiments with Picea abies in Denmark and Sweden. Canadian Journal of Forest Research, 31, 1826–1836.CrossRefGoogle Scholar
  59. Kim, I.-S., Kwon, H.-Y., Ryu, K.-O., & Choi, W. Y. (2008). Provenance by site interaction of Pinus densiflora in Korea. Silvae Genetica, 57(3), 131–138.CrossRefGoogle Scholar
  60. Klein, T., Di Matteo, G., Rotenberg, E., Cohen, S., & Yakir, D. (2013). Differential ecophysiological response of a major Mediterranean pine species across a climate gradient. Tree Physiology, 33, 26–36.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Krakowski, J., & Stoehr, M. U. (2009). Coastal Douglas-fir provenance variation: Patterns and predictions for British Columbia seed transfer. Annals of Forest Science, 66, 811, 10 p.CrossRefGoogle Scholar
  62. Krauss, K. W., Chambers, J. L., Allen, J. A., Soileau, D. M., Jr., & DeBosier, A. S. (2000). Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA. Journal of Coastal Research, 16(1), 153–163.Google Scholar
  63. La Farge, T. (1975). Genetic differences in stem form of ponderosa pine grown in Michigan. Silvae Genetica, 23, 211–213.Google Scholar
  64. Ladrach, W. E. (1998). Provenance research: The concept, application and achievement. In A. K. Mandal & G. I. Gibson (Eds.), Forest genetics and tree breeding (pp. 16–37). New Delhi: CBS Publishers and Distributors.Google Scholar
  65. Lambeth, C. C., McKeand, S., Rousseau, R., & Schmidtling, R. (2005). Planting nonlocal seed sources of loblolly pine - managing benefits and risks. Southern Journal of Applied Forestry, 29(2), 96–104.Google Scholar
  66. Lamy, J.-B., Delzon, S., Bouche, P. S., Alia, R., Vendramin, G. G., Cochard, H., & Plomion, C. (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist, 201, 874–886.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Langlet, O. (1971). Two hundred years of genecology. Taxon, 20, 653–721.CrossRefGoogle Scholar
  68. Ledig, F. T. (1998). Genetic variation in Pinus. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 251–280). Cambridge, UK: Cambridge University Press.Google Scholar
  69. Leibing, C., van Zonneveld, M., Jarvis, A., & Dvorak, W. (2009). Adaptation of tropical and subtropical pine plantation forestry to climate change: Realignment of Pinus patula and Pinus tecunumanii genotypes to 2020 planting site climates. Scandinavian Journal of Forest Research, 24, 483–493.CrossRefGoogle Scholar
  70. Leites, L. P., Rehfeldt, G. E., Robinson, A. P., Crookston, N. L., & Jaquish, B. (2012). Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Natural Resource Modeling, 25(3), 409–433.CrossRefGoogle Scholar
  71. Lesser, M. R., & Parker, W. H. (2004). Genetic variation in Picea glauca for growth and phenological traits from provenance tests in Ontario. Silvae Genetica, 53(4–5), 141–148.CrossRefGoogle Scholar
  72. Li, P., Beaulieu, J., Corriveau, A., & Bousquet, J. (1993). Genetic variation in juvenile growth and phenology in a white spruce provenance-progeny test. Silvae Genetica, 42(1), 52–60.Google Scholar
  73. Lopez, R., Lopez de Heredia, U., Collada, C., Cano, F. J., Emerson, B. C., Cochard, H., & Gil, L. (2013). Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis). Annals of Botany, 111, 1167–1179.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Manninen, A.-M., Tarhanen, S., Vuorinen, M., & Kainulainen, P. (2002). Comparing the variation of needle and wood terpenoids in scots pine provenances. Journal of Chemical Ecology, 28(1), 211–228.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Matyas, C. (1994). Modeling climate change effects with provenance test data. Tree Physiology, 14, 797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  76. McLane, S. C., & Aitken, S. N. (2012). Whitebark pine (Pinus albicaulis) assisted migration potential: Testing establishment north of the species range. Ecological Applications, 22(1), 142–153.PubMedCrossRefPubMedCentralGoogle Scholar
  77. McLane, S. C., Daniels, L. D., & Aitken, S. N. (2011). Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Forest Ecology and Management, 262, 115–123.CrossRefGoogle Scholar
  78. Morgenstern, M. (2011). Geographic variation in forest trees: Genetic basis and application of knowledge in silviculture. Vancouver: UBC Press.Google Scholar
  79. Moura, V. P. G., Dvorak, W. S., & Hodge, G. R. (1998). Provenance and family variation of Pinus oocarpa grown in the Brazilian cerrado. Forest Ecology and Management, 109, 315–322.CrossRefGoogle Scholar
  80. Munger, T. T., & Morris, W. G. (1936). Growth of Douglas-fir trees of known seed source (Vol. 537, 40 pp). Washington, DC: US Department of Agriculture Technical Bulletin.Google Scholar
  81. Mutke, S., Gordo, J., Chambel, M. R., Prada, M. A., Alvarez, D., Iglesias, S., & Gil, L. (2010). Phenotypic plasticity is stronger than adaptative differentiation among Mediterranean stone pine provenances. Forest Systems, 19(3), 354–366.CrossRefGoogle Scholar
  82. Mylecraine, K. A., Kuser, J. E., Zimmerman, G. L., & Smouse, P. E. (2005). Rangewide provenance variation in Atlantic white-cedar (Chamaecyparis thyoides): Early survival and growth in New Jersey and North Carolina plantations. Forest Ecology and Management, 216, 91–104.CrossRefGoogle Scholar
  83. Namkoong, G. (1969). Non-optimality of local races. In Proceedings of the 10th southern forest tree improvement conference (pp. 149–153). Houston: Texas Forest Service, Texas A & M University.Google Scholar
  84. Naydenov, K. D., Tremblay, F. M., Alexandrov, A., & Fenton, N. J. (2005). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochemical Systematics and Ecology, 33, 1226–1245.CrossRefGoogle Scholar
  85. O’Neill, G. A., Hamann, A., & Wang, T. (2008). Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. Journal of Applied Ecology, 45(4), 1040–1049.CrossRefGoogle Scholar
  86. Oleksyn, J., Reich, P. B., Chalupka, W., & Tjoelker, M. G. (1999). Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research, 14(1), 7–17.CrossRefGoogle Scholar
  87. Oleksyn, J., Zytkowiak, R., Karolewski, P., Reich, P. B., & Tjoelker, M. G. (2000). Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiology, 20, 837–847.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Oleszek, W., Stochmal, A., Karolewski, P., Simonet, A. M., Macias, F. A., & Tavea, A. (2002). Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area. Biochemical Systematics and Ecology, 30, 1011–1022.CrossRefGoogle Scholar
  89. Pedlar, J. H., McKenney, D. W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., O'Neill, G. A., Winder, R. S., & Ste-Marie, C. (2012). Placing forestry in the assisted migration debate. Bioscience, 62(9), 835–842.CrossRefGoogle Scholar
  90. Potter, K. M., Hipkins, V. D., Mahalovich, M. F., & Means, R. E. (2015). Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic and conservation implications. Tree Genetics & Genomes, 11(3), 1–23.CrossRefGoogle Scholar
  91. Rafil, Z. A., Dodd, R. S., & Zavarin, E. (1996). Genetic diversity in foliar terpenoids among natural populations of European black pine. Biochemical Systematics and Ecology, 24(4), 326–339.Google Scholar
  92. Rahi, A. A., Bowling, C., & Simpson, D. (2010). A red pine provenance test in northwest Ontario: 48 year results. The Forestry Chronicle, 86(3), 348–353.CrossRefGoogle Scholar
  93. Read, R. A. (1980). Genetic variation in seedling progeny of ponderosa pine provenances. Forest Science, 26(suppl_2), a0001–z0001.Google Scholar
  94. Rehfeldt, G. E. (1977). Growth and cold hardiness of intervarietal hybrids of Douglas-fir. Theoretical and Applied Genetics, 50, 3–15.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rehfeldt, G. E. (1978). Genetic differentiation of Douglas-fir populations from the Northern Rocky Mountains. Ecology, 59(6), 1264–1270.CrossRefGoogle Scholar
  96. Rehfeldt, G. E. (1979). Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca) populations. I. Idaho and northeast Washington. Heredity, 43, 383–397.CrossRefGoogle Scholar
  97. Rehfeldt, G. E. (1983). Adaptation of Pinus contorta populations to heterogeneous environments in northern Idaho. Canadian Journal of Forest Research, 13, 405–411.CrossRefGoogle Scholar
  98. Rehfeldt, G. E. (1988). Ecological genetics of Pinus contorta from the Rocky Mountains (USA): A synthesis. Silvae Genetica, 37(3–4), 131–135.Google Scholar
  99. Rehfeldt, G. E. (1989). Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca): A synthesis. Forest Ecology and Management, 28, 203–215.CrossRefGoogle Scholar
  100. Rehfeldt, G. E. (1990). Genetic differentiation among populations of Pinus ponderosa from the upper Colorado river basin. Botanical Gazette, 151(1), 125–137.CrossRefGoogle Scholar
  101. Rehfeldt, G. E. (1991). A model of genetic variation for Pinus ponderosa in the Inland Northwest (USA): Applications in gene resource management. Canadian Journal of Forest Research, 21, 1491–1500.CrossRefGoogle Scholar
  102. Rehfeldt, G. E. (1992). Breeding strategies for Larix occidentalis: Adaptations to the biotic and abiotic environment in relation to improving growth. Canadian Journal of Forest Research, 22, 5–13.CrossRefGoogle Scholar
  103. Rehfeldt, G. E. (1994a). Evolutionary genetics, the biological species and the ecology of the Interior cedar-hemlock forests. In Proceedings of the interior cedar-hemlock-white pine forests: Ecology and management (pp. 91–100). Pullman: Washington State University.Google Scholar
  104. Rehfeldt, G. E. (1994b). Genetic structure of western red cedar populations in the Interior West. Canadian Journal of Forest Research, 24, 670–680.CrossRefGoogle Scholar
  105. Rehfeldt, G. E. (1997). Quantitative analyses of the genetic structure of closely related conifers with disparate distributions and demographics: The Cupressus arizonica (Cupressaceae) complex. American Journal of Botany, 84(2), 190–200.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rehfeldt, G. E. (1999). Systematics and genetic structure of Washoe pine: Applications in conservation genetics. Silvae Genetica, 48, 167–172.Google Scholar
  107. Rehfeldt, G. E., & Gallo, L. A. (2001). Introduction of ponderosa pine and Douglas-fir to Argentina. New Forests, 21, 35–44.CrossRefGoogle Scholar
  108. Rehfeldt, G. E., & Jaquish, B. (2010). Ecological impacts and management strategies for western larch in the face of climate-change. Mitigation and Adaptation Strategies for Global Change, 15, 283–306.CrossRefGoogle Scholar
  109. Rehfeldt, G. E., Hoff, R. J., & Steinhoff, R. J. (1984). Geographic patterns of genetic variation in Pinus monticola. Botanical Gazette, 145(2), 229–239.CrossRefGoogle Scholar
  110. Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., & Hamilton, D. A., Jr. (1999). Genetic responses to climate in Pinus contorta: Niche breadth, climate change and reforestation. Ecological Monographs, 69(3), 375–407.CrossRefGoogle Scholar
  111. Rehfeldt, G. E., Tchebakova, N. M., Parfenova, Y. I., Wykoff, W. R., Kuzmina, N. A., & Milyutin, L. I. (2002). Intraspecific responses to climate in Pinus sylvestris. Global Change Biology, 8, 912–929.CrossRefGoogle Scholar
  112. Rehfeldt, G. E., Tchebakova, N. M., & Parfenova, Y. I. (2004). Genetic responses to climate and climate -change in conifers of the temperate and boreal forests. Recent Research and Development in Genetics Breeding, 1, 113–130.Google Scholar
  113. Rehfeldt, G. E., Jaquish, B. C., Lopez-Upton, J., Saenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014a). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotuga menziesii: Realized climate niches. Forest Ecology and Management, 324, 126–137.CrossRefGoogle Scholar
  114. Rehfeldt, G. E., Jaquish, B. C., Lopez-Upton, J., Saenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014b). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotuga menziesii: Clines in growth potential. Forest Ecology and Management, 324, 138–146.CrossRefGoogle Scholar
  115. Rehfeldt, G. E., Jaquish, B. C., Lopez-Upton, J., Saenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014c). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotuga menziesii: Reforestation. Forest Ecology and Management, 324, 147–157.CrossRefGoogle Scholar
  116. Rockwood, D. L., Huber, D. A., & White, T. L. (2001). Provenance and family variability in slash pine (Pinus elliottii var. elliottii Engelm.) grown in southern Brazil and northeastern Argentina. New Forests, 21, 115–125.CrossRefGoogle Scholar
  117. Rossi, S., & Bousquet, J. (2014). The bud break process and its variation among local populations of boreal black spruce. Frontiers in Plant Science, 5, 1–9.CrossRefGoogle Scholar
  118. Russell, J. H., & Krakowski, J. (2012). Geographic variation and adaptation to current and future climates of Callitropsis nootkatensis populations. Canadian Journal of Forest Research, 42(12), 2118–2129.CrossRefGoogle Scholar
  119. Rweyongeza, D. M. (2011). Pattern of genotype-environment interaction in Picea glauca (Moench) Voss in Alberta, Canada. Annals of Forest Science, 68, 245–253.CrossRefGoogle Scholar
  120. Saenz-Romero, C., Beaulieu, J., & Rehfeldt, G. E. (2011). Altitudinal genetic variation among Pinus patula populations from Oaxaca, Mexico, in growth chambers simulating global warming temperatures. Agorciencia, 45(3), 399–411.Google Scholar
  121. Saenz-Romero, C., Rehfeldt, G. E., Soto-Correa, J. C., Agular-Auilar, S., Zamarripa-Morales, V., & Lopez-Upton, J. (2012). Altitudinal genetic variation among Pinus pseudostrobus populations from Michoacan, Mexico. Two location shadehouse test results. Revista Fitotecnia Mexicana, 35(2), 111–121.Google Scholar
  122. Savva, Y., Schweingruber, F., Milyutin, L., & Vaganov, E. (2002). Genetic and environmental signals in tree rings from different provenances of Pinus sylvestris L. planted in the southern taiga, central Siberia. Trees, 16, 313–324.CrossRefGoogle Scholar
  123. Schaberg, P. G., Wilkinson, R. C., Shane, J. B., Donnelly, J. R., & Cali, P. F. (1995). Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiology, 15, 345–350.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Schmidtling, R. C. (1994). Use of provenance tests to predict response to climate change: Loblolly pine and Norway spruce. Tree Physiology, 14, 805–817.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Shutyaev, A. M., & Giertych, M. (2000). Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genetica, 49(3), 137–151.Google Scholar
  126. Sierra-DeGrado, R., Pando, V., Martinez-Surimendi, P., Penalvo, A., Bascones, E., & Moulia, B. (2008). Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiology, 28, 835–846.CrossRefGoogle Scholar
  127. Sorensen, F. C. (1979). Provenance variation in Pseudotsuga menziesii seedlings from the var. menziesii-var. glauca transition zone in Oregon. Silvae Genetica, 28(2–3), 96–103.Google Scholar
  128. Sorensen, F. C. (1983). Geographic variation in seedling Douglas-fir (Pseudotsuga menziesii) from the western Siskiyou Mountains of Oregon. Ecology, 64, 696–702.CrossRefGoogle Scholar
  129. Sorensen, F. C. (1992). Genetic variation and seed transfer guidelines for lodgepole pine in central Oregon (Res. Pap. PNW-RP-453). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 30p.CrossRefGoogle Scholar
  130. Sorensen, F. C. (1994). Genetic variation and seed transfer guidelines for ponderosa pine in Central Oregon (Res. Pap. PNW-RP-472). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 24p.Google Scholar
  131. St. Clair, J. B. (2006). Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Canadian Journal of Forest Research, 84, 1110–1121.Google Scholar
  132. St. Clair, J. B., & Howe, G. T. (2007). Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Global Change Biology, 13, 1441–1454.CrossRefGoogle Scholar
  133. St. Clair, J. B., Mandel, N. L., & Vance-Borland, K. W. (2005). Genecology of Douglas-fir in western Oregon and Washington. Annals of Botany, 96(7), 1199–1214.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Stern, K. & Roche, L. (1974). Genetics of forest ecosystems. 330 pp.Google Scholar
  135. Stonecypher, R. W., Piesch, R. F., Helland, G. G., Chapman, J. G., & Reno, H. J. (1996). Results from genetic tests of selected parents of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) in an applied tree improvement program. Forest Science, 42., Monograph(32), 1–35.Google Scholar
  136. Sweet, G. B. (1965). Provenance differences in Pacific Coast Douglas-fir. 1. Seed and seedling characteristics. Silvae Genetica, 14, 46–56.Google Scholar
  137. Sziklai, O. (1990, August 20–24). Douglas-fir provenance-progeny test at Haney B.C., Canada. P 2.313–2.321. In: Proceedings of joint meeting Western Forest Genetics Association and IUFRO Working Parties S2.02–05, 06,12 and 14 – Douglas-fir, contorta pine, Sitka spruce, and Abies breeding and genetic resources, Olympia, WA. Federal Way, WA: Weyerhaeuser Co.Google Scholar
  138. Thomson, A. M., Riddell, C. L., & Parker, W. H. (2009). Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Canadian Journal of Forest Research, 39(1), 143–153.CrossRefGoogle Scholar
  139. Turesson, G. (1922). The species and the variety as ecological units. Hereditas, 3, 100–113.CrossRefGoogle Scholar
  140. Turnbull, J. W., & Griffin, A. R. (1986). Concept of provenance and its relationship to infraspecific classification in forest trees. In B. T. Styles (Ed.), Infraspecific classification of wild and cultivated plants. Oxford: Clarendon Press.Google Scholar
  141. Ukrainetz, N. K., O’Neill, G. A., & Jaquish, B. (2011). Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: A case study for interior spruce in British Columbia. Canadian Journal of Forest Research, 41(7), 1452–1464.CrossRefGoogle Scholar
  142. van Zonneveld, M., Jarvis, A., Dvorak, W., Lema, G., & Leibing, C. (2009). Climate change impact predictions on Pinus patula and Pinus tecunumanii populations in Mexico and Central America. Forest Ecology and Management, 257, 1566–1576.CrossRefGoogle Scholar
  143. Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A., & Aitken, S. N. (2006a). Use of response functions in selecting lodgepole pine populations for future climate. Global Change Biology, 12, 2404–2416.CrossRefGoogle Scholar
  144. Wang, T., O’Neill, G. A., & Aitken, S. N. (2010a). Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications, 20(1), 153–163.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Weidman, E. H. (1939). Evidences of racial influences in a 25-year test of ponderosa pine. Journal of Agricultural Research, 59, 855–888.Google Scholar
  146. Wells, O. O. (1964). Geographic variation in ponderosa pine. Silvae Genetica, 13(4), 89–103.Google Scholar
  147. Wells, O. O., & Wakeley, P. C. (1966). Geographic variation in survival, growth, and fusiform rust infection of planted loblolly pine. Forest Science, 12(suppl_2), a0001–z0001.Google Scholar
  148. Wheeler, N. C., & Critchfield, W. B. (1985b). The distribution and botanical characteristics of lodgepole pine. In D. M. Baumgartner, R. G. Krebil, J. T. Arnott, & G. F. Weetman (Eds.), Symposium proceedings. Lodgepole pine: The species and its management, Spokane, Washington, 1984 (pp. 1–14). Pullman, WA: Washington State University, Cooperative Extension Service.Google Scholar
  149. Wheeler, N. C., & Neale, D. B. (2013). Landscape genomics: An emerging discipline that can aid forest land managers with planting stock decisions. Mountain Views: Cirmount, 7(1), 10–14.Google Scholar
  150. Wheeler, N. C., Kriebel, H. B., Lee, C. H., Read, R. A., & Wright, J. W. (1976). 15-year performance of European black pine in provenance tests in North Central United States. Silvae Genetica, 25(1), 1–6.Google Scholar
  151. Wheeler, N. C., Jech, K., Masters, S., Brobst, S. W., Alvarado, A. B., Hoover, A. J., & Snader, K. M. (1992). Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. Journal of Natural Products, 55(4), 432–440.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wheeler, N. C., Jech, K. S., Masters, S. A., O’Brien, C. J., Timmons, D. W., Stonecypher, R. W., & Lupkes, A. (1995a). Genetic variation and parameter estimates in Taxus brevifolia (Pacific Yew). Canadian Journal of Forest Research, 25(12), 1913–1927.CrossRefGoogle Scholar
  153. Wheeler, N. C., Steiner, K. C., Schlarbaum, S. E., & Neale, D. B. (2015). The evolution of forest genetics and tree improvement research in the United States. Journal of Forestry, 113(5), 500–510.CrossRefGoogle Scholar
  154. White, T. L., & Ching, K. K. (1985). Provenance study of Douglas-Fir in the Pacific northwest region. Silvae Genetica, 34, 2–3.Google Scholar
  155. White, T. L., Adams, W. T., & Neale, D. B. (2007). Forest genetics. Cambridge, MA: CABI Publishing.CrossRefGoogle Scholar
  156. Williams, M. I., & Dumroese, R. K. (2014). Planning the future’s forests with assisted migration. In V. A. Sample & R. P. Bixler (Eds.), Forest conservation and management in the Anthropocene: Conference proceedings. RMRS-P-71 (pp. 133–144). Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  157. Wright, J. W. (1944). Ecotypic differentiation in red ash. Journal of Forestry, 42, 591–597.Google Scholar
  158. Wright, J. W. (1953). A survey of forest genetics research. Journal of Forestry, 51, 330–333.Google Scholar
  159. Wright, J. W. (1976). Introduction to forest genetics. New York: Academic Press, 463 pp.Google Scholar
  160. Wright, J. W., Lemmien, W. A., & Bright, J. N. (1969). Early growth of ponderosa pine ecotypes in Michigan. Forest Science, 15(2), 121–129.Google Scholar
  161. Wright, J. W., Kung, F. H., Read, R. A., Lemmien, W. A., & Bright, J. N. (1971). Genetic variation in Rocky Mountatin Douglas-fir. Silvae Genetica, 20, 54–60.Google Scholar
  162. Xie, C., & Ying, C. C. (1995). Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp. latifolia) in Canada. Canadian Journal of Forest Research, 25, 2010–2021.CrossRefGoogle Scholar
  163. Yanchuk, A. D., Yeh, F. C., & Dancik, B. P. (1988). Variation of stem rust resistance in a lodgepole pine provenance-family plantation. Forest Science, 34, 1067–1075.Google Scholar
  164. Yang, J., Pedlar, J. H., McKenney, D. W., & Weersink, A. (2015). The development of universal response functions to facilitate climate-smart regeneration of black spruce and white pine in Ontario, Canada. Forest Ecology and Management, 339, 34–43.CrossRefGoogle Scholar
  165. Ying, C. C., Illingworth, K., & Carlson, M. (1985). Geographic variation of lodgepole pine and its implications for tree improvement in British Columbia. In D. M. Baumgartner, R. G. Krebil, J. T. Arnott, & G. F. Weetman (Eds.), Symposium proceedings. Lodgepole pine: The species and its management, Spokane, Washington, 1984 (pp. 55–60). Pullman: Washington State University, Cooperative Extension Service.Google Scholar
  166. Zhang, J. W., Klopfenstein, N. B., & Peterson, G. W. (1997). Genetic variation in disease resistance of Juniperus virginiana and J. scopulorum grown in eastern Nebraska. Silvae Genetica, 46(1), 11–16.Google Scholar
  167. Zobel, B., & Talbert, J. (1984). Applied forest tree improvement. New York: Wiley.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations