Proteomics and Metabolomics

  • David B. Neale
  • Nicholas C. Wheeler


In this chapter we move to the final stage of the Central Dogma and beyond. Having previously discussed the genome (Chaps.  2,  3,  4 and  5) and the transcriptome (Chap.  6), we will now present the proteome and the metabolome. It has only been in the last 20 years that technologies have been developed to capture, characterize, and quantify the complete pool of proteins and metabolites from an animal or plant tissue sample. Prior to that, individual proteins and metabolites generally had to be assayed one at a time. This work is known as protein or metabolite profiling.


  1. Abril, N., Gion, J. M., Kerner, R., Müller-Starck, G., Cerrillo, R. M. N., Plomion, C., et al. (2011). Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 72(10), 1219–1242.CrossRefGoogle Scholar
  2. Bahrman, N., & Petit, R. J. (1995). Genetic polymorphism in maritime pine (Pinus pinaster Ait.) assessed by two-dimensional gel electrophoresis of needle, bud, and pollen proteins. Journal of Molecular Evolution, 41(2), 231–237.CrossRefGoogle Scholar
  3. Bahrman, N., Zivy, M., Damerval, C., & Baradat, P. H. (1994). Organisation of the variability of abundant proteins in seven geographical origins of maritime pine (Pinus pinaster Ait.). Theoretical and Applied Genetics, 88(3–4), 407–411.CrossRefGoogle Scholar
  4. Blödner, C., Majcherczyk, A., Kües, U., & Polle, A. (2007). Early drought-induced changes to the needle proteome of Norway spruce. Tree Physiology, 27(10), 1423–1431.CrossRefGoogle Scholar
  5. Businge, E., Brackmann, K., Moritz, T., & Egertsdotter, U. (2012). Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiology, 32(2), 232–244.CrossRefGoogle Scholar
  6. Businge, E., Bygdell, J., Wingsle, G., Moritz, T., & Egertsdotter, U. (2013). The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiologia Plantarum, 149(2), 273–285.CrossRefGoogle Scholar
  7. Chen, Y., Chen, T., Shen, S., Zheng, M., Guo, Y., Lin, J., et al. (2006). Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. The Plant Journal, 47(2), 174–195.CrossRefGoogle Scholar
  8. Chen, T., Wu, X., Chen, Y., Li, X., Huang, M., Zheng, M., et al. (2009). Combined proteomic and cytological analysis of Ca2+−calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiology, 149(2), 1111–1126.CrossRefGoogle Scholar
  9. Costa, P., & Plomion, C. (1999). Genetic analysis of needle proteins in maritime pine 2. Variation of protein accumulation. Silvae Genetica, 48(3), 146–150.Google Scholar
  10. Costa, P., Bahrman, N., Frigerio, J. M., Kremer, A., & Plomion, C. (1998). Water-deficit-responsive proteins in maritime pine. Plant Molecular Biology, 38(4), 587–596.CrossRefGoogle Scholar
  11. Costa, P., Pionneau, C., Bauw, G., Dubos, C., Bahrmann, N., Kremer, A., et al. (1999). Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis, 20, 1098–1108.CrossRefGoogle Scholar
  12. Dauwe, R., Holliday, J. A., Aitken, S. N., & Mansfield, S. D. (2012). Metabolic dynamics during autumn cold acclimation within and among populations of Sitka spruce (Picea sitchensis). New Phytologist, 194(1), 192–205.CrossRefGoogle Scholar
  13. Dowlatabadi, R., Weljie, A. M., Thorpe, T. A., Yeung, E. C., & Vogel, H. J. (2009). Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiology and Biochemistry, 47(5), 343–350.CrossRefGoogle Scholar
  14. Eckert, A. J., Wegrzyn, J. L., Cumbie, W. P., Goldfarb, B., Huber, D. A., Tolstikov, V., et al. (2012a). Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytologist, 193(4), 890–902.CrossRefGoogle Scholar
  15. Gerber, S., Rodolphe, F., Bahrman, N., & Baradat, P. (1993). Seed-protein variation in maritime pine (Pinus pinaster Ait.) revealed by two-dimensional electrophoresis: Genetic determinism and construction of a linkage map. Theoretical and Applied Genetics, 85(5), 521–528.CrossRefGoogle Scholar
  16. Gion, J. M., Lalanne, C., Le Provost, G., Ferry-Dumazet, H., Paiva, J., Chaumeil, P., et al. (2005). The proteome of maritime pine wood forming tissue. Proteomics, 5(14), 3731–3751.CrossRefGoogle Scholar
  17. Hall, D. E., Robert, J. A., Keeling, C. I., Domanski, D., Qesada, A. L., Jancsik, S., Kuzyk, M., Br, H., Borchers, C. H., & Bohlmann, J. (2011). An integrated genomic, proteomic, and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes which are resistant or susceptible to white pine weevil. The Plant Journal, 65, 936–948.CrossRefGoogle Scholar
  18. He, C. Y., Zhang, J. G., Duan, A. G., Sun, H. G., Fu, L. H., & Zheng, S. X. (2007). Proteins responding to drought and high-temperature stress in Pinus armandii Franch. Botany, 85(10), 994–1001.Google Scholar
  19. He, C. Y., Zhang, J. G., & Duan, A. G. (2012b). Physiological and protein responses to drought in four pine seedlings. Silvae Genetica, 61(3), 93–103.CrossRefGoogle Scholar
  20. Herrera, R., Krier, C., Lalanne, C., Ba, E. M., Stokes, A., Salin, F., et al. (2010). (Not) Keeping the stem straight: A proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism. BMC Plant Biology, 10(1), 217.CrossRefGoogle Scholar
  21. Holliday, J. A., Ralph, S. G., White, R., Bohlmann, J., & Aitken, S. N. (2008). Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytologist, 178(1), 103–122.CrossRefGoogle Scholar
  22. Ketchum, R. E., Rithner, C. D., Qiu, D., Kim, Y. S., Williams, R. M., & Croteau, R. B. (2003). Taxus metabolomics: Methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry, 62(6), 901–909.CrossRefGoogle Scholar
  23. Kjellsen, T. D., Shiryaeva, L., Schröder, W. P., & Strimbeck, G. R. (2010). Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata). Journal of Proteomics, 73(5), 965–975.CrossRefGoogle Scholar
  24. Lippert, D., Zhuang, J., Ralph, S., Ellis, D. E., Gilbert, M., Olafson, R., et al. (2005). Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics, 5(2), 461–473.CrossRefGoogle Scholar
  25. Lippert, D., Chowrira, S., Ralph, S. G., Zhuang, J., Aeschliman, D., Ritland, C., et al. (2007). Conifer defense against insects: Proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi). Proteomics, 7(2), 248–270.CrossRefGoogle Scholar
  26. Lippert, D. N., Ralph, S. G., Phillips, M., White, R., Smith, D., Hardie, D., et al. (2009). Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response. Proteomics, 9(2), 350–367.CrossRefGoogle Scholar
  27. Lorenz, W. W., Alba, R., Yu, Y. S., Bordeaux, J. M., Simões, M., & Dean, J. F. (2011). Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics, 12(1), 264.CrossRefGoogle Scholar
  28. Mast, S., Peng, L., Jordan, T. W., Flint, H., Phillips, L., Donaldson, L., et al. (2010). Proteomic analysis of membrane preparations from developing Pinus radiata compression wood. Tree Physiology, 30(11), 1456–1468.CrossRefGoogle Scholar
  29. Morel, A., Teyssier, C., Trontin, J. F., Eliášová, K., Pešek, B., Beaufour, M., et al. (2014a). Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: Transcriptomic and proteomic analyses. Physiologia Plantarum, 152(1), 184–201.CrossRefGoogle Scholar
  30. Morel, A., Trontin, J. F., Corbineau, F., Lomenech, A. M., Beaufour, M., Reymond, I., et al. (2014b). Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: Biological, carbohydrate and proteomic analyses. Planta, 240(5), 1075–1095.CrossRefGoogle Scholar
  31. Paiva, J. A. P., Garnier-Géré, P. H., Rodrigues, J. C., Alves, A., Santos, S., Graça, J., et al. (2008). Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season. New Phytologist, 179(4), 1180–1194.CrossRefGoogle Scholar
  32. Plomion, C., Costa, P., Bahrman, N., & Frigerio, J. M. (1997). Genetic analysis of needle proteins in maritime pine. 1. Mapping dominant and codominant protein markers assayed on diploid tissue, in a haploid-based genetic map. Silvae Genetica, 46, 161–165.Google Scholar
  33. Plomion, C., Pionneau, C., Brach, J., Costa, P., & Bailleres, H. (2000). Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Physiology, 123(3), 959–970.CrossRefGoogle Scholar
  34. Prior, N., Little, S. A., Pirone, C., Gill, J. E., Smith, D., Han, J., et al. (2013). Application of proteomics to the study of pollination drops. Applications in Plant Sciences, 1(4), 1300008.CrossRefGoogle Scholar
  35. Robinson, A. R., Ukrainetz, N. K., Kang, K. Y., & Mansfield, S. D. (2007). Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist, 174(4), 762–773.CrossRefGoogle Scholar
  36. Robinson, A. R., Dauwe, R., Ukrainetz, N. K., Cullis, I. F., White, R., & Mansfield, S. D. (2009). Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics. Plant Biotechnology Journal, 7(9), 952–963.CrossRefGoogle Scholar
  37. Shi, J., Zhen, Y., & Zheng, R. H. (2010). Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. Journal of Experimental Botany, 61(9), 2367–2381.CrossRefGoogle Scholar
  38. Teyssier, C., Maury, S., Beaufour, M., Grondin, C., Delaunay, A., Le Metté, C., et al. (2014). In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): Global DNA methylation and proteomic analyses. Physiologia Plantarum, 150(2), 271–291.CrossRefGoogle Scholar
  39. Valcu, C. M., Lalanne, C., Müller-Starck, G., Plomion, C., & Schlink, K. (2008a). Protein polymorphism between 2 Picea abies populations revealed by 2-dimensional gel electrophoresis and tandem mass spectrometry. Journal of Heredity, 99(4), 364–375.CrossRefGoogle Scholar
  40. Valcu, C. M., Lalanne, C., Plomion, C., & Schlink, K. (2008b). Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations. Proteomics, 8(20), 4287–4302.CrossRefGoogle Scholar
  41. Valledor, L., Castillejo, M. A., Lenz, C., Rodríguez, R., Canal, M. J., & Jorrín, J. (2008). Proteomic analysis of Pinus radiata needles: 2-DE map and protein identification by LC/MS/MS and substitution-tolerant database searching. Journal of Proteome Research, 7(7), 2616–2631.CrossRefGoogle Scholar
  42. Valledor, L., Cañal, M. J., Lenz, C., Rodríguez, R., & Jorrín-Novo, J. V. (2010). Proteome regulation and epigenetic code during Pinus radiata needle maturation. Proteómica, 5, 153–155.Google Scholar
  43. Wang, D., Eyles, A., Mandich, D., & Bonello, P. (2006b). Systemic aspects of host–pathogen interactions in Austrian pine (Pinus nigra): A proteomics approach. Physiological and Molecular Plant Pathology, 68(4), 149–157.CrossRefGoogle Scholar
  44. Wang, X., Liu, Z., Niu, L., & Fu, B. (2013). Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: A proteomic analysis. Trees, 27(1), 297–309.CrossRefGoogle Scholar
  45. Wu, X., Chen, T., Zheng, M., Chen, Y., Teng, N., Šamaj, J., et al. (2008). Integrative proteomic and cytological analysis of the effects of extracellular Ca2+ influx on Pinus bungeana pollen tube development. Journal of Proteome Research, 7(10), 4299–4312.CrossRefGoogle Scholar
  46. Zhen, Y., Zhao, Z. Z., Zheng, R. H., & Shi, J. (2012). Proteomic analysis of early seed development in Pinus massoniana L. Plant Physiology and Biochemistry, 54, 97–104.CrossRefGoogle Scholar
  47. Zulak, K. G., Lippert, D. N., Kuzyk, M. A., Domanski, D., Chou, T., Borchers, C. H., & Bohlmann, J. (2009). Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). The Plant Journal, 60(6), 1015–1030.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations