Gene Expression and the Transcriptome

  • David B. Neale
  • Nicholas C. Wheeler


The central dogma of molecular biology, first described by Francis Crick, states that the heritable transmission of information moves in the direction of the DNA to RNA (transcription) and from RNA to protein (translation). In Chaps.  2,  3,  4, and  5 of Part I of this volume, we have focused almost entirely on DNA, the genomes of conifers, and the genes encoded in the genome. In this chapter, we focus on RNA or more specifically the messenger RNA (mRNA) which collectively is called the transcriptome. The amount of mRNA transcribed from an individual gene at any particular time point or within any tissue type is one measure of gene expression. In the final chapter of this section, we will discuss the proteome and metabolome, which are additional measures of the expression of genes.


  1. Adomas, A., Heller, G., Olson, A., Osborne, J., Karlsson, M., Zyl, J. L. V., et al. (2008). Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. Tree Physiology, 28(6), 885.CrossRefGoogle Scholar
  2. Cronn, R., Dolan, P. C., Jogdeo, S., Wegrzyn, J. L., Neale, D. B., Clair, J. S., & Denver, D. R. (2017). Transcription through the eye of a needle: Daily and annual cycles of gene expression variation in Douglas-fir needles. bioRxiv, 117374.Google Scholar
  3. Dolgosheina, E. V., Morin, R. D., Aksay, G., Sahinalp, S. C., Magrini, V., Mardis, E. R., et al. (2008). Conifers have a unique small RNA silencing signature. RNA, 14(8), 1508–1515.CrossRefGoogle Scholar
  4. Dubouzet, J. G., Donaldson, L., Black, M. A., McNoe, L., Liu, V., & Lloyd-Jones, G. (2014). Heterologous hybridisation to a Pinus microarray: Profiling of gene expression in Pinus radiata saplings exposed to ethephon. New Zealand Journal of Forestry Science, 44(1), 21.CrossRefGoogle Scholar
  5. Egertsdotter, U., Van Zyl, L. M., MacKay, J., Peter, G., Kirst, M., Clark, C., et al. (2004). Gene expression during formation of earlywood and latewood in loblolly pine: Expression profiles of 350 genes. Plant Biology, 6(6), 654–663.CrossRefGoogle Scholar
  6. Foster, A. J., Hall, D. E., Mortimer, L., Abercromby, S., Gries, R., Gries, G., et al. (2013). Identification of genes in Thuja plicata foliar terpenoid defenses. Plant Physiology, 161(4), 1993–2004.CrossRefGoogle Scholar
  7. Fraga, M. F., Cañal, M., & Rodríguez, R. (2002a). Phase-change related epigenetic and physiological changes in Pinus radiata D. Don. Planta, 215(4), 672–678.CrossRefGoogle Scholar
  8. Fraga, M. F., Rodríguez, R., & Cañal, M. J. (2002b). Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiology, 22(11), 813–816.CrossRefGoogle Scholar
  9. Friedmann, M., Ralph, S. G., Aeschliman, D., Zhuang, J., Ritland, K., Ellis, B. E., et al. (2007). Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. Journal of Experimental Botany, 58(3), 593–614.CrossRefGoogle Scholar
  10. Gesell, A., Blaukopf, M., Madilao, L., Yuen, M. M. S., Withers, S. G., Mattsson, J., Russell, J. H., & Bohlmann, J. (2015). The gymnosperm cytochrome P450 CYP750B1 catalyzes stereospecific monoterpene hydroxylation of (+)-sabinene in thujone biosynthesis in Thuja plicata. Plant Physiology, 168, 94–106.CrossRefGoogle Scholar
  11. Greenwood, M. S., Hopper, C. A., & Hutchison, K. W. (1989). Maturation in larch I. effect of age on shoot growth, foliar characteristics, and DNA methylation. Plant Physiology, 90(2), 406–412.CrossRefGoogle Scholar
  12. Heller, G., Adomas, A., Li, G., Osborne, J., van Zyl, L., Sederoff, R., et al. (2008). Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biology, 8(1), 19.CrossRefGoogle Scholar
  13. Holliday, J. A., Ralph, S. G., White, R., Bohlmann, J., & Aitken, S. N. (2008). Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytologist, 178(1), 103–122.CrossRefGoogle Scholar
  14. Huang, L. C., Hsiao, L. J., Pu, S. Y., Kuo, C. I., Huang, B. L., Tseng, T. C., et al. (2012b). DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiologia Plantarum, 145(2), 360–368.CrossRefGoogle Scholar
  15. Johnsen, Ø., Skrøppa, T., Junttila, O., & Dæhlen, O. G. (1996). Influence of the female flowering environment on autumn frost-hardiness of Picea abies progenies. Theoretical and Applied Genetics, 92(7), 797–802.CrossRefGoogle Scholar
  16. Johnsen, Ø., Dæhlen, O. G., Østreng, G., & Skrøppa, T. (2005). Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytologist, 168(3), 589–596.CrossRefGoogle Scholar
  17. Joosen, R. V., Lammers, M., Balk, P. A., Bronnum, P., Konings, M. C. J. M., Perks, M., et al. (2006). Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiology, 26(10), 1297.CrossRefGoogle Scholar
  18. Kohmann, K., & Johnsen, O. (1994). The timing of bud set in seedlings of Picea abies from seed crops of a cool versus a warm spring and summer. Silvae Genetica, 43(5), 329–332.Google Scholar
  19. Le Provost, G., Paiva, J., Pot, D., Brach, J., & Plomion, C. (2003). Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine-rich protein. Planta, 217(5), 820–830.CrossRefGoogle Scholar
  20. Li, X., Wu, H. X., & Southerton, S. G. (2010). Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytologist, 187(3), 764–776.CrossRefGoogle Scholar
  21. Li, X., Wu, H. X., & Southerton, S. G. (2011a). Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genomics, 12(1), 480.CrossRefGoogle Scholar
  22. Li, X., Wu, H. X., & Southerton, S. G. (2011b). Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene, 487(1), 62–71.CrossRefGoogle Scholar
  23. Li, X., Yang, X., & Wu, H. X. (2013). Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genomics, 14(1), 768.CrossRefGoogle Scholar
  24. Liu, J. J., Sturrock, R. N., & Benton, R. (2013a). Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics, 14(1), 884.CrossRefGoogle Scholar
  25. Lorenz, W. W., & Dean, J. F. (2002). SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiology, 22(5), 301–310.CrossRefGoogle Scholar
  26. Lorenz, W. W., Alba, R., Yu, Y. S., Bordeaux, J. M., Simões, M., & Dean, J. F. (2011). Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics, 12(1), 264.CrossRefGoogle Scholar
  27. Mageroy, M. H., Parent, G., Germanos, G., Giguère, I., Delvas, N., Maaroufi, H., et al. (2015). Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. Plant Journal, 81, 68–80.CrossRefGoogle Scholar
  28. Men, L., Yan, S., & Liu, G. (2013). De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genomics, 14, 548.CrossRefGoogle Scholar
  29. Mishima, K., Fujiwara, T., Iki, T., Kuroda, K., Yamashita, K., Tamura, M., et al. (2014). Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics, 15(1), 219.CrossRefGoogle Scholar
  30. Morin, R. D., Aksay, G., Dolgosheina, E., Ebhardt, H. A., Magrini, V., Mardis, E. R., et al. (2008). Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Research, 18(4), 571–584.CrossRefGoogle Scholar
  31. Paiva, J. A. P., Garnier-Géré, P. H., Rodrigues, J. C., Alves, A., Santos, S., Graça, J., et al. (2008). Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season. New Phytologist, 179(4), 1180–1194.CrossRefGoogle Scholar
  32. Palle, S. R., Seeve, C. M., Eckert, A. J., Cumbie, W. P., Goldfarb, B., & Loopstra, C. A. (2011). Natural variation in expression of genes involved in xylem development in loblolly pine (Pinus taeda L.). Tree Genetics & Genomes, 7(1), 193–206.CrossRefGoogle Scholar
  33. Parent, G. J., Raherison, E., Sena, J., & MacKay, J. J. (2015). Chapter two-forest tree genomics: Review of Progress. Advances in Botanical Research, 74, 39–92.CrossRefGoogle Scholar
  34. Pavy, N., Boyle, B., Nelson, C., Paule, C., Giguère, I., Caron, S., et al. (2008). Identification of conserved core xylem gene sets: Conifer cDNA microarray development, transcript profiling and computational analyses. New Phytologist, 180(4), 766–786.CrossRefGoogle Scholar
  35. Qiu, Z., Wan, L., Chen, T., Wan, Y., He, X., Lu, S., et al. (2013). The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. New Phytologist, 199(3), 708–719.CrossRefGoogle Scholar
  36. Raherison, E. S., Giguère, I., Caron, S., Lamara, M., & MacKay, J. J. (2015). Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. New Phytologist, 207(1), 172–187.CrossRefGoogle Scholar
  37. Ralph, S. G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J. A., Nelson, C. C., et al. (2006). Conifer defence against insects: Microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant, Cell & Environment, 29(8), 1545–1570.CrossRefGoogle Scholar
  38. Ranade, S., Abrahamsson, S., Niemi, J., & García-Gil, M. (2013). Pinus taeda cDNA microarray as a tool for candidate gene identification for local red/far-red light adaptive response in Pinus sylvestris. American Journal of Plant Sciences, 4, 479–493.CrossRefGoogle Scholar
  39. Reid, K. E., Holliday, J. A., Yuen, M., Nguyen, A., Aitken, S. N., & Bohlmann, J. (2013). Sequencing of Sitka spruce (Picea sitchensis) cDNA libraries constructed from autumn buds and foliage reveals autumn-specific spruce transcripts. Tree Genetics & Genomes, 9(3), 683–691.CrossRefGoogle Scholar
  40. Stephenson, P. G., Harris, N., Cottrell, J. E., Ralph, S. G., Bohlmann, J., & Taylor, G. (2011). A transcriptomic approach to identify genes associated with wood density in Picea sitchensis. Scandinavian Journal of Forest Research, 26(S11), 82–96.CrossRefGoogle Scholar
  41. Sun, H., Paulin, L., Alatalo, E., & Asiegbu, F. O. (2011). Response of living tissues of Pinus sylvestris to the saprotrophic biocontrol fungus Phlebiopsis gigantea. Tree Physiology, 31(4), 438–451.CrossRefGoogle Scholar
  42. Verne, S., Jaquish, B., White, R., Ritland, C., & Ritland, K. (2011). Global transcriptome analysis of constitutive resistance to the white pine weevil in spruce. Genome Biology and Evolution, 3, 851–867.CrossRefGoogle Scholar
  43. Villalobos, D. P., Diaz-Moreno, S. M., Said el, S. S., Canas, R. A., Osuna, D., Van Kerckhoven, S. H., et al. (2012). Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes. BMC Plant Biology, 12, 100.CrossRefGoogle Scholar
  44. Wan, L. C., Wang, F., Guo, X., Lu, S., Qiu, Z., Zhao, Y., et al. (2012a). Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biology, 12(1), 146.CrossRefGoogle Scholar
  45. Wan, L. C., Zhang, H., Lu, S., Zhang, L., Qiu, Z., Zhao, Y., et al. (2012b). Transcriptome-wide identification and characterization of miRNAs from Pinus densata. BMC Genomics, 13(1), 132.CrossRefGoogle Scholar
  46. Yakovlev, I. A., Asante, D. K., Fossdal, C. G., Junttila, O., & Johnsen, Ø. (2011). Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Science, 180(1), 132–139.CrossRefGoogle Scholar
  47. Yakovlev, I. A., Lee, Y., Rotter, B., Olsen, J. E., Skroppa, T., Johnsen, O., et al. (2014). Temperature-dependent differential transcriptomes during formation of an epigenetic memory in Norway spruce embryogenesis. Tree Genetics & Genomes, 10, 355e366.CrossRefGoogle Scholar
  48. Yang, S. H. S., & Loopstra, C. C. (2005). Seasonal variation in gene expression for loblolly pines (Pinus taeda) from different geographical regions. Tree Physiology, 25(8), 1063.CrossRefGoogle Scholar
  49. Yeaman, S., Hodgins, K. A., Suren, H., Nurkowski, K. A., Rieseberg, L. H., Holliday, J. A., & Aitken, S. N. (2014). Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca× Picea engelmannii). New Phytologist, 203(2), 578–591.CrossRefGoogle Scholar
  50. Zhang, J., Wu, T., Li, L., Han, S., Li, X., Zhang, S., & Qi, L. (2013). Dynamic expression of small RNA populations in larch (Larix leptolepis). Planta, 237(1), 89–101.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations