Noncoding and Repetitive DNA

  • David B. Neale
  • Nicholas C. Wheeler


It is well established that conifer genomes are comprised largely of noncoding and repetitive DNA (Chaps.  2 and  3). However, the much smaller fraction of the genome comprised of protein-coding genes has been the focus of most research (see Chaps.  5,  6, and  7) because these genes ultimately lead to phenotypes and the genetic differences among species and individuals within species (Sects. “Ribosomal DNA” and “Tandem Repeats: Satellite, Minisatellite, and Microsatellite DNA”). Nevertheless, some attention has been paid to characterizing the nature of noncoding and repetitive DNA and what functional significance, if any, this DNA might have. In this chapter, we will introduce the types of noncoding and repetitive DNA that have been discovered in conifers and what is known about how and when in evolutionary time this DNA was amplified and became so abundant. We will also point to how variability in this DNA has been used in population genetic studies (Chap.  9) and evolutionary and phylogenetic studies (Chaps.  15 and  16). There are four general classes of noncoding and repetitive DNA that will be discussed: (1) ribosomal DNA, (2) tandemly duplicated DNA, (3) transposons and retrotransposons, and (4) pseudogenes.


  1. Amarasinghe, V., & Carlson, J. E. (1998). Physical mapping and characterization of 5S rRNA genes in Douglas-fir. Journal of Heredity, 89(6), 495–500.CrossRefGoogle Scholar
  2. Bobola, M. S., Smith, D. E., & Klein, A. S. (1992). Five major nuclear ribosomal repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana. Molecular Biology and Evolution, 9(1), 125–137.PubMedGoogle Scholar
  3. Brandes, A., Heslop-Harrison, J. S., Kamm, A., Kubis, S., Doudrick, R. L., & Schmidt, T. (1997). Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Molecular Biology, 33(1), 11–21.CrossRefGoogle Scholar
  4. Brown, G. R., & Carlson, J. E. (1997). Molecular cytogenetics of the genes encoding 18S-5.8 S-26S rRNA and 5S rRNA in two species of spruce (Picea). Theoretical and Applied Genetics, 95(1–2), 1–9.CrossRefGoogle Scholar
  5. Echt, C. S., May-Marquardt, P., Hseih, M., & Zahorchak, R. (1996). Characterization of microsatellite markers in eastern white pine. Genome, 39(6), 1102–1108.CrossRefGoogle Scholar
  6. Elsik, C. G., & Williams, C. G. (2000). Retroelements contribute to the excess low-copy-number DNA in pine. Molecular and General Genetics MGG, 264(1), 47–55.CrossRefGoogle Scholar
  7. Fan, F., Wen, X., Ding, G., & Cui, B. (2013). Isolation, identification, and characterization of genomic LTR retrotransposon sequences from masson pine (Pinus massoniana). Tree Genetics & Genomes, 9(5), 1237–1246.CrossRefGoogle Scholar
  8. Fan, F., Cui, B., Zhang, T., Ding, G., & Wen, X. (2014). LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of masson pine (Pinus massoniana). Tree Genetics & Genomes, 10(1), 213–222.CrossRefGoogle Scholar
  9. Friesen, N., Brandes, A., & Heslop-Harrison, J. S. P. (2001). Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Molecular Biology and Evolution, 18(7), 1176–1188.CrossRefGoogle Scholar
  10. Gernandt, D. S., Liston, A., & Piñero, D. (2001). Variation in the nrDNA ITS of Pinus subsection Cembroides: Implications for molecular systematic studies of pine species complexes. Molecular Phylogenetics and Evolution, 21(3), 449–467.CrossRefGoogle Scholar
  11. González-Ibeas, D., Martinez-García, P. J., Famula, R. A., Delfino-Mix, A., Stevens, K. A., Loopstra, C. A., et al. (2016). Assessing the gene content of the megagenome: Sugar pine (Pinus lambertiana). G3: Genes, Genomes, Genetics, 6(12), 3787–3802.CrossRefGoogle Scholar
  12. Govindaraju, D. R., & Cullis, C. A. (1992). Ribosomal DNA variation among populations of a Pinus rigida Mill. (pitch pine) ecosystem: I. Distribution of copy numbers. Heredity, 69(2), 133.CrossRefGoogle Scholar
  13. Hamberger, B., Hall, D., Yuen, M., Oddy, C., Hamberger, B., Keeling, C. I., et al. (2009). Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome. BMC Plant Biology, 9(1), 106.CrossRefGoogle Scholar
  14. Hao, D., Yang, L., & Xiao, P. (2011). The first insight into the Taxus genome via fosmid library construction and end sequencing. Molecular Genetics and Genomics, 285(3), 197–205.CrossRefGoogle Scholar
  15. Kamm, A., Doudrick, R. L., Heslop-Harrison, J. S., & Schmidt, T. (1996). The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proceedings of the National Academy of Sciences, 93(7), 2708–2713.CrossRefGoogle Scholar
  16. Karvonen, P., & Savolainen, O. (1993). Variation and inheritance of ribosomal DNA in Pinus sylvestris L. (Scots pine). Heredity, 71(6), 614–622.CrossRefGoogle Scholar
  17. Karvonen, P., Karjalainen, M., & Savolainen, O. (1993). Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): Chromosomal organization and structure. Genetica, 88(1), 59–68.CrossRefGoogle Scholar
  18. Kinlaw, C. S., & Neale, D. B. (1997). Complex gene families in pine genomes. Trends in Plant Science, 2(9), 356–359.CrossRefGoogle Scholar
  19. Kossack, D. S., & Kinlaw, C. S. (1999). IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Molecular Biology, 39(3), 417–426.CrossRefGoogle Scholar
  20. Kossack, D. S., Barrios, M., & Kinlaw, C. S. (1990). IFG: An abundant family of retrotransposons in pine. In UFRO Molecular Genetics Meeting, Lake Tahoe, September 30–October 4, 1990. (Abstract).Google Scholar
  21. Kovach, A., Wegrzyn, J. L., Parra, G., Holt, C., Bruening, G. E., Loopstra, C. A., et al. (2010). The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics, 11(1), 420.CrossRefGoogle Scholar
  22. Kriebel, H. B. (1985). DNA sequence components of the Pinus strobus nuclear genome. Canadian Journal of Forest Research, 15(1), 1–4.CrossRefGoogle Scholar
  23. Kvarnheden, A., & Engström, P. (1992). Genetically stable, individual-specific differences in hypervariable DNA in Norway spruce, detected by hybridization to a phage M13 probe. Canadian Journal of Forest Research, 22(1), 117–123.CrossRefGoogle Scholar
  24. L’Homme, Y., Séguin, A., & Tremblay, F. M. (2000). Different classes of retrotransposons in coniferous spruce species. Genome, 43(6), 1084–1089.CrossRefGoogle Scholar
  25. Liu, W., Thummasuwan, S., Sehgal, S. K., Chouvarine, P., & Peterson, D. G. (2011a). Characterization of the genome of bald cypress. BMC Genomics, 12(1), 553.CrossRefGoogle Scholar
  26. Miguel, C., Simões, M., Oliveira, M. M., & Rocheta, M. (2008). Envelope-like retrotransposons in the plant kingdom: Evidence of their presence in gymnosperms (Pinus pinaster). Journal of Molecular Evolution, 67(5), 517–525.CrossRefGoogle Scholar
  27. Morse, A. M., Whetten, R. W., Dubos, C., & Campbell, M. M. (2009). Post-translational modification of an R2R3-MYB transcription factor by a MAP Kinase during xylem development. New Phytologist, 183(4), 1001–1013.CrossRefGoogle Scholar
  28. Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. Scholar
  29. Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno, C., et al. (2017a). The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 7(9), 3157–3167.CrossRefGoogle Scholar
  30. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y. C., Scofield, D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497(7451), 579–584.CrossRefGoogle Scholar
  31. Pfeiffer, A., Olivieri, A. M., & Morgante, M. (1997). Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome, 40(4), 411–419.CrossRefGoogle Scholar
  32. Prunier, J., Verta, J. P., & MacKay, J. J. (2016). Conifer genomics and adaptation: At the crossroads of genetic diversity and genome function. New Phytologist, 209(1), 44–62.CrossRefGoogle Scholar
  33. Rocheta, M., Cordeiro, J., Oliveira, M., & Miguel, C. (2007). PpRT1: The first complete gypsy-like retrotransposon isolated in Pinus pinaster. Planta, 225(3), 551–562.CrossRefGoogle Scholar
  34. Rogstad, S. H., Patton, J. C., & Schaal, B. A. (1988). M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proceedings of the National Academy of Sciences, 85(23), 9176–9178.CrossRefGoogle Scholar
  35. Smith, D. N., & Devey, M. E. (1994). Occurrence and inheritance of microsatellites in Pinus radiata. Genome, 37(6), 977–983.CrossRefGoogle Scholar
  36. Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., et al. (2016). Sequence of the Sugar Pine Megagenome. Genetics, 204(4), 1613–1626.CrossRefGoogle Scholar
  37. Strauss, S. H., & Tsai, C. H. (1988). Ribosomal gene number variability in Douglas-fir. Journal of Heredity, 79(6), 453–458.CrossRefGoogle Scholar
  38. Stuart-Rogers, C., & Flavell, A. J. (2001). The evolution of Ty1-copia group retrotransposons in gymnosperms. Molecular Biology and Evolution, 18(2), 155–163.CrossRefGoogle Scholar
  39. Warren, R. L., Keeling, C. I., Yuen, M. M. S., Raymond, A., Taylor, G. A., Vandervalk, B. P., et al. (2015). Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal, 83(2), 189–212.CrossRefGoogle Scholar
  40. Wegrzyn, J. L., Lin, B. Y., Zieve, J. J., Dougherty, W. M., Martínez-García, P. J., Koriabine, M., et al. (2013). Insights into the loblolly pine genome: Characterization of BAC and fosmid sequences. PLoS One, 8(9), e72439.CrossRefGoogle Scholar
  41. Wegrzyn, J. L., Liechty, J. D., Stevens, K. A., Wu, L. S., Loopstra, C. A., Vasquez-Gross, H. A., et al. (2014). Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics, 196(3), 891–909.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations