Advertisement

Gene and Genome Sequencing in Conifers: Modern Era

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

We have defined the period up to the late 1990s as the classical era of the study of conifer genomes (Chap.  2) and everything after that as the modern era. The distinction between these two eras is based largely on the availability of DNA sequences. DNA sequencing of conifer DNA in fact began much earlier. The first report of sequencing of conifer DNA, to our knowledge, was that of Kenny et al. (1988). In this study, Kenny et al. (1988) cloned a small piece of Pinus contorta genomic DNA (gDNA) and sequenced the DNA manually using the chain termination method of Sanger (Sanger et al. 1977). They then compared the DNA sequence and the translated amino acid sequence to other published actin gene sequences. In the decade that followed, there were dozens of similar reports where short pieces of DNA (either from gDNA or complementary DNA (cDNA)) were sequenced and compared to sequence entries in growing databases of DNA sequences. This very early period of DNA sequencing will be covered briefly as it pertains to an understanding of gene structure in conifers (Chap.  5). In this chapter, we will begin in the late 1990s with high-throughput expressed sequence tag (EST) sequencing, the primary technology used to study conifer genomes for the ensuing 15 years or more. Then we will cover gene sequencing using a next-generation sequencing (NGS) technology, called RNA-seq, that began in 2010. Finally, we will summarize the work on full genome sequencing in conifers that began in 2013.

References

  1. Adams, M. D., & Kelley, J. M. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252(5013), 1651–1656.CrossRefGoogle Scholar
  2. Allona, I., Quinn, M., Shoop, E., Swope, K., Cyr, S. S., Carlis, J., et al. (1998). Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences, 95(16), 9693–9698.CrossRefGoogle Scholar
  3. Birol, I., Raymond, A., Jackman, S. D., Pleasance, S., Coope, R., Taylor, G. A., et al. (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, 29(12), 1492–1497.CrossRefGoogle Scholar
  4. Cairney, J., Zheng, L., Cowels, A., Hsiao, J., Zismann, V., Liu, J., et al. (2006). Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Molecular Biology, 62(4–5), 485–501.CrossRefGoogle Scholar
  5. Canales, J., Bautista, R., Label, P., Gómez-Maldonado, J., Lesur, I., Fernández-Pozo, N., et al. (2014). De novo assembly of maritime pine transcriptome: Implications for forest breeding and biotechnology. Plant Biotechnology Journal, 12(3), 286–299.CrossRefGoogle Scholar
  6. Chen, J., Uebbing, S., Gyllenstrand, N., Lagercrantz, U., Lascoux, M., & Källman, T. (2012a). Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms. BMC Genomics, 13(1), 589.CrossRefGoogle Scholar
  7. Cronn, R., Liston, A., Parks, M., Gernandt, D. S., Shen, R., & Mockler, T. (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36(19), e122.CrossRefGoogle Scholar
  8. Fernández-Pozo, N., Canales, J., Guerrero-Fernández, D., Villalobos, D. P., Díaz-Moreno, S. M., Bautista, R., et al. (2011). EuroPineDB: A high-coverage web database for maritime pine transcriptome. BMC Genomics, 12(1), 366.CrossRefGoogle Scholar
  9. Futamura, N., Totoki, Y., Toyoda, A., Igasaki, T., Nanjo, T., Seki, M., et al. (2008). Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics, 9(1), 383.CrossRefGoogle Scholar
  10. González-Ibeas, D., Martinez-García, P. J., Famula, R. A., Delfino-Mix, A., Stevens, K. A., Loopstra, C. A., et al. (2016). Assessing the gene content of the megagenome: Sugar pine (Pinus lambertiana). G3: Genes, Genomes, Genetics, 6(12), 3787–3802.CrossRefGoogle Scholar
  11. Guo, W., Grewe, F., Cobo-Clark, A., Fan, W., Duan, Z., Adams, R. P., et al. (2014). Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biology and Evolution, 6(3), 580–590.CrossRefGoogle Scholar
  12. Hall, D. E., Yuen, M. M., Jancsik, S., Quesada, A. L., Dullat, H. K., Li, M., et al. (2013). Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana). BMC Plant Biology, 13(1), 80.CrossRefGoogle Scholar
  13. Hirao, T., Watanabe, A., Kurita, M., Kondo, T., & Takata, K. (2008). Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: Diversified genomic structure of coniferous species. BMC Plant Biology, 8(1), 70.CrossRefGoogle Scholar
  14. Howe, G. T., Yu, J., Knaus, B., Cronn, R., Kolpak, S., Dolan, P., et al. (2013). A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics, 14(1), 137.CrossRefGoogle Scholar
  15. Hsu, C. Y., Wu, C. S., & Chaw, S. M. (2014). Ancient nuclear plastid DNA in the yew family (Taxaceae). Genome Biology and Evolution, 6(8), 2111–2121.CrossRefGoogle Scholar
  16. Huang, H. H., Xu, L. L., Tong, Z. K., Lin, E. P., Liu, Q. P., Cheng, L. J., & Zhu, M. Y. (2012a). De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genomics, 13(1), 648.CrossRefGoogle Scholar
  17. Jackman, S. D., Warren, R. L., Gibb, E. A., Vandervalk, B. P., Mohamadi, H., Chu, J., et al. (2016). Organellar genomes of white spruce (Picea glauca): Assembly and annotation. Genome Biology and Evolution, 8(1), 29–41.CrossRefGoogle Scholar
  18. Jermstad, K. D., Bassoni, D. L., Kinlaw, C. S., & Neale, D. B. (1998). Partial DNA sequencing of Douglas-fir cDNAs used for RFLP mapping. Theoretical and Applied Genetics, 97(5–6), 771–776.CrossRefGoogle Scholar
  19. Kenny, J. R., Dancik, B. P., Florence, L. Z., & Nargang, F. E. (1988). Nucleotide sequence of the carboxy-terminal portion of a lodgepole pine actin gene. Canadian Journal of Forest Research, 18(12), 1595–1602.CrossRefGoogle Scholar
  20. Kinlaw, C. S., Ho, T., Ljungkvist, V., & Baysdorfer, C. (1997). Gene discovery in loblolly pine through cDNA sequencing [abstract]. In D. B. Neale (Ed.), Forest Tree Genome Workshop. Placerville, CA: Institute of Forest Genetics, USDA Forest Service (1997). Abstract nr 4.Google Scholar
  21. Kirst, M., Johnson, A. F., Baucom, C., Ulrich, E., Hubbard, K., Staggs, R., et al. (2003). Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 100(12), 7383–7388.CrossRefGoogle Scholar
  22. Kriebel, H. B. (1985). DNA sequence components of the Pinus strobus nuclear genome. Canadian Journal of Forest Research, 15(1), 1–4.CrossRefGoogle Scholar
  23. Li, X., Wu, H. X., Dillon, S. K., & Southerton, S. G. (2009a). Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics, 10(1), 41.CrossRefGoogle Scholar
  24. Liang, C., Wang, G., Liu, L., Ji, G., Fang, L., Liu, Y., et al. (2007). ConiferEST: An integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs). BMC Genomics, 8(1), 134.CrossRefGoogle Scholar
  25. Liu, J. J., Sturrock, R. N., & Benton, R. (2013a). Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics, 14(1), 884.CrossRefGoogle Scholar
  26. Lorenz, W. W., Sun, F., Liang, C., Kolychev, D., Wang, H., Zhao, X., et al. (2006). Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiology, 26(1), 1–16.CrossRefGoogle Scholar
  27. Lorenz, W. W., Ayyampalayam, S., Bordeaux, J. M., Howe, G. T., Jermstad, K. D., Neale, D. B., et al. (2012). Conifer DBMagic: A database housing multiple de novo transcriptome assemblies for 12 diverse conifer species. Tree Genetics & Genomes, 8(6), 1477–1485.CrossRefGoogle Scholar
  28. Mann, I. K., Wegrzyn, J. L., & Rajora, O. P. (2013). Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: An important conifer genomic resource. BMC Genomics, 14(1), 702.CrossRefGoogle Scholar
  29. Müller, T., Ensminger, I., & Schmid, K. J. (2012). A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. BMC Genomics, 13(1), 673.CrossRefGoogle Scholar
  30. Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. http://genomebiology.com/2014/15/3/R59.CrossRefGoogle Scholar
  31. Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno, C., et al. (2017a). The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 7(9), 3157–3167.CrossRefGoogle Scholar
  32. Neale, D. B., Martínez-García, P. J., De La Torre, A. R., Montanari, S., & Wei, X. X. (2017b). Tree genome sequencing: Novel insights into plant biology. Annual Review of Plant Biology, 68(1), 457–483.CrossRefGoogle Scholar
  33. Niu, S. H., Li, Z. X., Yuan, H. W., Chen, X. Y., Li, Y., & Li, W. (2013). Transcriptome characterization of Pinus tabuliformis and evolution of genes in the Pinus phylogeny. BMC Genomics, 14(1), 263.CrossRefGoogle Scholar
  34. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y. C., Scofield, D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497(7451), 579–584.CrossRefGoogle Scholar
  35. Parchman, T. L., Geist, K. S., Grahnen, J. A., Benkman, C. W., & Buerkle, C. A. (2010). Transcriptome sequencing in an ecologically important tree species: Assembly, annotation, and marker discovery. BMC Genomics, 11(1), 180.CrossRefGoogle Scholar
  36. Pavy, N., Paule, C., Parsons, L., Crow, J. A., Morency, M. J., Cooke, J., et al. (2005). Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics, 6(1), 144.CrossRefGoogle Scholar
  37. Rake, A. V., Miksche, J. P., Hall, R. B., & Hansen, K. M. (1980). DNA reassociation kinetics of four conifers. Canadian Journal of Genetics and Cytology, 22(1), 69–79.CrossRefGoogle Scholar
  38. Ralph, S. G., Chun, H. J. E., Kolosova, N., Cooper, D., Oddy, C., Ritland, C. E., et al. (2008). A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics, 9(1), 484.CrossRefGoogle Scholar
  39. Rigault, P., Boyle, B., Lepage, P., Cooke, J. E., Bousquet, J., & MacKay, J. J. (2011). A white spruce gene catalog for conifer genome analyses. Plant Physiology, 157(1), 14–28.CrossRefGoogle Scholar
  40. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467.CrossRefGoogle Scholar
  41. Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., et al. (2016). Sequence of the Sugar Pine Megagenome. Genetics, 204(4), 1613–1626.CrossRefGoogle Scholar
  42. Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596–1604.CrossRefGoogle Scholar
  43. Vieira, L. N., Faoro, H., Rogalski, M., de Freitas Fraga, H. P., Cardoso, R. L. A., de Souza, E. M., et al. (2014). The complete chloroplast genome sequence of Podocarpus lambertii: Genome structure, evolutionary aspects, gene content and SSR detection. PLoS One, 9(3), e90618.CrossRefGoogle Scholar
  44. Wakasugi, T., Tsudzuki, J., Ito, S., Nakashima, K., Tsudzuki, T., & Sugiura, M. (1994). Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proceedings of the National Academy of Sciences, 91(21), 9794–9798.CrossRefGoogle Scholar
  45. Warren, R. L., Keeling, C. I., Yuen, M. M. S., Raymond, A., Taylor, G. A., Vandervalk, B. P., et al. (2015). Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal, 83(2), 189–212.CrossRefGoogle Scholar
  46. Wu, C. S., & Chaw, S. M. (2014). Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): Evolution towards shorter intergenic spacers. Plant Biotechnology Journal, 12(3), 344–353.CrossRefGoogle Scholar
  47. Wu, C. S., & Chaw, S. M. (2016). Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (cupressophytes). Genome Biology and Evolution, 8(12), 3740–3750.PubMedPubMedCentralGoogle Scholar
  48. Wu, Q., Sun, C., Luo, H., Li, Y., Niu, Y., Sun, Y., et al. (2011a). Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing. Planta Medica, 77(04), 394–400.CrossRefGoogle Scholar
  49. Wu, C. S., Wang, Y. N., Hsu, C. Y., Lin, C. P., & Chaw, S. M. (2011b). Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biology and Evolution, 3, 1284–1295.CrossRefGoogle Scholar
  50. Yi, X., Gao, L., Wang, B., Su, Y. J., & Wang, T. (2013). The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): Evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. Genome Biology and Evolution, 5(4), 688–698.CrossRefGoogle Scholar
  51. Zhang, Y., Ma, J., Yang, B., Li, R., Zhu, W., Sun, L., et al. (2014a). The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): Loss of an inverted repeat region and comparative analysis with related species. Gene, 540(2), 201–209.CrossRefGoogle Scholar
  52. Zimin, A. V., Stevens, K. A., Crepeau, M. W., Puiu, D., Wegrzyn, J. L., Yorke, J. A., et al. (2017). An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience, 6, 1–4.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations