Advertisement

Paleobotany, Taxonomic Classification, and Phylogenetics

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

The preceding chapters reviewed our knowledge of genetic diversity in conifers from the genome to populations and species, from SNPs to phenotypic variation in morphological and adaptive traits controlled by dozens or even hundreds of genes. In this chapter we look at the diversity of conifers at the species, genus, and family levels, and the evolutionary relationships among them. As the title of this chapter implies, the scope of discussion is large which will almost assuredly result in the superficial treatment of some areas that have garnered considerable scientific enquiry. Our objective, nevertheless, is to capture current views on the number of extant conifer species, how they are classified, from whence they came, and how they are related to one another. In doing so, we hope to avoid confusion associated with the numerous and often nuanced definitions of terms such as taxonomy, systematics, classification, and phylogenetics (Mayden 1992; Stevens 1994; Singh 2004; Wiley and Lieberman 2011). In the treatment presented here we define taxonomy simply as the discipline of discovery, description, naming, and classification of groups or taxa, typically species, genera, and families. Taxonomy today is based upon, and richly informed by, phylogenetics, the study of the evolutionary relationships between taxa. Current hypotheses of phylogenetic relationships among and within conifer families, and thoughts on the origins of conifers are summarized here, along with estimates of times of divergence for major taxa based on fossil records and molecular clock studies.

References

  1. Adams, R. P., Bartel, J. A., & Price, R. A. (2009). A new genus, Hesperocyparis, for the cypresses of the western hemisphere. Phytologia, 91(1), 160–185.Google Scholar
  2. Adams, R. P., Bartel, J. A., Terry, R., Callahan, F., & Bisbee, J. (2014). Taxonomy of Hesperocyparis montana, H. revealiana, and H. stephensonii: Evidence from leaf essential oils analyses and DNA sequences. Phytologia, 96(2), 71–83.Google Scholar
  3. Alverez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.CrossRefGoogle Scholar
  4. Axelrod, D. I. (1980). History of the maritime closed-cone pines, Alta and Baja California (Vol. 120, p. 143). Berkeley: Univ. Calif. Publ. Geol. Sci.Google Scholar
  5. Beck, C. B. (1960). The identity of Archaeopteris and Callixylon. Brittonia, 12, 351–368.CrossRefGoogle Scholar
  6. Beck, C. B. (1988). Origin and evolution of gymnosperms. New York: Columbia University Press.Google Scholar
  7. Beck, C. B., & Wight, D. C. (1988). Progymnosperms. In C. B. Beck (Ed.), Origin and evolution of gymnosperms. New York: Columbia University Press.Google Scholar
  8. Biffin, E., Conran, J., & Lowe, A. (2011). Podocarp evolution: A molecular phylogenetic perspective. Ecology of the Podocarpaceae in Tropical Forests, 95, 1–20.Google Scholar
  9. Biffin, E., Brodribb, T. J., Hill, R. S., Thomas, P., & Lowe, A. J. (2012). Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B, 279, 341–348.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bowe, L. M., Coat, G., & dePamphilis, C. W. (2000). Phylogewny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, 97(8), 4092–4097.CrossRefGoogle Scholar
  11. Braukmann, T. W. A., Kuzmina, M., & Stefanovic, S. (2009). Loss of all plastid nhd genes in Gnetales and conifers: Extent and evolutionary significance for the seed plant phylogeny. Current Genetics, 55(3), 323–337.PubMedCrossRefGoogle Scholar
  12. Brunsfeld, S. J., Soltis, P. S., Soltis, D. E., Gadek, P. A., Quinn, C. J., Strenge, D. D., & Ranker, T. A. (1994). Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany, 19(2), 253–262.CrossRefGoogle Scholar
  13. Burleigh, J. G., & Mathews, S. (2007). Phylogenetic signal in nucleotide data from seed plants: Implications for resolving the seed plant tree of life. International Journal of Plant Sciences, 168.Google Scholar
  14. Castresana, J. (2007). Topological variation in single-gene phylogenetic trees. Genome Biology., 8(6), 216. https://doi.org/10.1186/gb-2007-8-6-216.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., et al. (1993). Phylogenetics of seed plants: An analysis of nucleic sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80, 528–580.CrossRefGoogle Scholar
  16. Chaw, S. M., Zharkikh, A., Sung, H. M., Lau, T. C., & Li, W. H. (1997). Molecular phylogeny of extant gymnosperms and seed plant evolution: Analysis of nuclear 18S rRNA sequences. Molecular biology and evolution, 14, 56–68.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chaw, S.-M., Parkinson, C. L., Cheng, Y., Vincent, T. M., & Palmer, J. D. (2000). Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings- National Academy of Sciences USA, 97(8), 4086–4091.CrossRefGoogle Scholar
  18. Chen, J., Hao, Z., Xu, H., Yang, L., Liu, G., Sheng, Y., Zheng, C., et al. (2015). The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Frontiers in Plant Science, 6, 447. https://doi.org/10.3389/fpls.2015.00447.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng, Y., Nicolson, R. G., Tripp, K., & Chaw, S.-J. (2000). Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution., 14(3), 353–365.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Conran, J. G., Wood, G. G., Martin, P. G., Dowd, J. M., Quinn, C. J., Gadek, P. A., & Price, R. A. (2000). Generic relationships within and between the gymnosperm families Podocarpacaeae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany, 48, 715–724.CrossRefGoogle Scholar
  21. Critchfield, W. B. (1984a, August 30). Impact of the Pleistocene on the genetic structure of North American conifers. In 8th North American forest biology workshop. Logan, Utah (Edited and Compiled by R. Lanner. pp. 70–118).Google Scholar
  22. Cronn, R., Liston, A., Parks, M., Gernandt, D. S., Shen, R., & Mockler, T. (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36(19), e122.PubMedPubMedCentralCrossRefGoogle Scholar
  23. de La Torre, J. E., Egan, M. G., Katari, M. S., Brenner, E. D., Stevenson, D. W., Coruzzi, G. M., & DeSalle, R. (2006). ESTimating plant phylogeny: Lessons from partitioning. BMC Evolutionary Biology, 6(1), 48.PubMedPubMedCentralCrossRefGoogle Scholar
  24. De Laubenfels, D. J. (1965). The relationships of Fitzroya cupressoides (Molina) Johnstone and Diselma archeri J.D. Hooker based on morphological considfeations. Phytomorphology, 15, 414–419.Google Scholar
  25. De Laubenfels, D. J. (1969). A revision of the Malesian and Pacific rainforest conifers, I. Podocarpaceae, in part. Journal of the Arnold Arboretum, 50, 274–369.CrossRefGoogle Scholar
  26. De Laubenfels, D. J. (1972). Podocarpaceae, pp. 9-22 in J.-F. Leroy, ed., Flore de Madagascar et des Comores, Gymnospermes. Paris: Museum National d’Histoire Naturelle. (in French).Google Scholar
  27. De Laubenfels, D. J. (1985). A taxonomic revision of the genus Podocarpus. Blumea, 30, 251–278.Google Scholar
  28. De Laubenfels, D. J. (1987). Revision of the genus Nageia Podocarpaceae. Blumea, 12, 209–211.Google Scholar
  29. DeGiorgio, M., Syring, J., Eckert, A. J., Liston, A., Cronn, R., Neale, D. B., & Rosenberg, N. A. (2014). An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines. BMC Evolutionary Biology, 14(1), 67.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Donoghue, M. J., & Doyle, J. A. (2000). Seed plant phylogeny: demise of the anthophyte hypothesis? Current Biology, 10(3), R106–R109.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Eckenwalder, J. E. (1976). Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger. Madrono, 23, 237–256.Google Scholar
  32. Eckert, A. J., & Hall, B. D. (2006). Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): Phylogenetic tests of fossil-based hypotheses. Molecular Phylogenetics and Evolution, 40, 166–182.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Escapa, I. H., & Catalano, S. A. (2013). Phylogenetic analysis of Araucariaceae: Integrating molecules, morphology, and fossils. International Journal of Plant Sciences, 174(8), 1153–1170.CrossRefGoogle Scholar
  34. Escapa, I., Cuneo, R., & Axsmith, B. (2008). A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: Implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology, 151, 110–122.CrossRefGoogle Scholar
  35. Escapa, I. H., Rothwell, G. W., Stockey, R. A., & Cuneo, N. R. (2012). Seed cone anatomy of Cheirolepidiaceae (Conferales): Reinterpreting Pararaucaria patagonica Wieland. American Journal of Botany, 99(6), 1058–1068.PubMedCrossRefGoogle Scholar
  36. Farjon, A. (2008). A natural history of conifers. Portland: Timber Press.Google Scholar
  37. Farjon, A. (2010). A handbook of the world’s conifers. Leiden, The Netherlands: Brill Academic Publishers.CrossRefGoogle Scholar
  38. Farjon, A., & Garcia, S. O. (2003). Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany, 90(1), 8–16.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Farjon, A., & Rushforth, K. D. (1989). A classification of Abies Miller (Pinaceae). Notes Roy Bot Gard Edinburgh, 46(1), 59–79.Google Scholar
  40. Farjon, A., Hiep, N. T., Harder, D. K., Loc, P. K., & Averyanov, L. (2002). A new genus and species in Cupressaceae (Coniferales) from northern Vietnam, Xanthocyparis vietnamensis. Novon, 12(2), 179–189.CrossRefGoogle Scholar
  41. Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Assoc.Google Scholar
  42. Florin, R. (1951). Evolution in cordaites and conifers. Acta Horti Gergiani, 15, 285–388.Google Scholar
  43. Florin, R. (1955). The systematics of the gymnosperms. In A century of progress in the natural sciences, 1853–1953 (p. 323).Google Scholar
  44. Gadek, P. A., Alpers, D. L., Heslewood, M. M., & Quinn, C. J. (2000). Relationships within Cupressaceae sensu lato: A combined morphological and molecular approach. American Journal of Botany, 87(7), 1044–1057.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Geada López, G., Kamiya, K., & Harada, K. (2002). Phylogenetic relationships of diploxylon pines (subgenus Pinus) based on plastid sequence data. International Journal of Plant Sciences, 163, 737–747.CrossRefGoogle Scholar
  46. Gernandt, D. S., Liston, A., & Piñero, D. (2003). Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. Systematic Botany, 28(4), 657–673.Google Scholar
  47. Gernandt, D. S., Lopez, G. G., Garcia, S. O., & Liston, A. (2005). Phylogeny and classification of Pinus. Taxon, 54(1), 29–42.CrossRefGoogle Scholar
  48. Gernandt, D. S., Magallon, S., Lopez, G. G., Flores, O. Z., Willyard, A., & Liston, A. (2008). Use of simultaneous analyses to guide fossil-based calibrations of Pinaceae phylogeny. International Journal of Plant Sciences, 169(8), 1086–1099.CrossRefGoogle Scholar
  49. Gernandt, D. S., Holman, G., Campbell, C., Parks, M., Mathews, S., Raubeson, L. A., Liston, A., Stockey, R. A., & Rothwell, G. W. (2016). Phylogenetics of extant and fossil Pinaceae: Methods for increasing topological stability. Botany, 94(9), 863–884.CrossRefGoogle Scholar
  50. Ghimire, B., & Heo, K. (2014). Cladistic analysis of Taxaceae s.l. Plant Systematics and Evolution, 300, 217–223.CrossRefGoogle Scholar
  51. Gilmore, S., & Hill, K. D. (1997). Relationships of the Wollemi pine (Wollemi nobilis) and a molecular phylogeny of the Auraucariaceae. Telopea, 9, 275–291.CrossRefGoogle Scholar
  52. Greenwood, D. R., Archibald, S. B., Mathewes, R. W., & Moss, P. T. (2005). Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: Climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42, 167–185.CrossRefGoogle Scholar
  53. Gugerli, F., Sperisen, C., Buchler, U., Brunner, I., Brodbeck, S., Palmer, J. D., & Qiu, Y.-L. (2001). The evolutionary split of Pinaceae from other conifers: Evidence from an intron loss and multigene phylogeny. Molecular Phylogenetics and Evolution, 21(2), 167–175.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hajibabaei, M., Xia, J., & Drouin, G. (2006). Seed plant phylogeny: Gnetophytes are derived conifers and a sister group to Pinaceae. Molecular Phylogenetics and Evolution., 40(1), 208.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hao, D. C., Huang, B., & Yang, L. (2008a). Phylogenetic relations of the genus Taxus inferred from chloroplast intergenic spacer and nuclear coding DNA. Biological & Pharmaceutical Bulletin, 31(2), 260–265.CrossRefGoogle Scholar
  56. Hao, D. C., Xiao, P. G., Huang, B., Ge, G. B., & Yang, L. (2008b). Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution, 276, 89–104.CrossRefGoogle Scholar
  57. Harper, C. J., Taylor, T. N., Krings, M., & Taylor, E. L. (2015). Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 215, 76–84.CrossRefGoogle Scholar
  58. Hart, J. A. (1987). A cladistics analysis of conifers: Preliminary results. Journal of the Arnold Arboretum, 68, 269–307.Google Scholar
  59. Hayata, B. (1931). The Sciadopityaceae represented by Sciadopitys verticillata Sieb. Et Zucc., an endemic species of Japan. Botanical Magazine (Tokyo), 45, 567–569.CrossRefGoogle Scholar
  60. He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W., & Lamont, B. B. (2012b). Fire-adapted traits of Pinus arose in the fiery Cretaceous. The New Phytologist, 195, 751–759.Google Scholar
  61. Hennig, W. (1950). Grundzuge einer Theorie der phylogenetishchen Systemmatik. Berlin: Deutscher Zentralverlag.Google Scholar
  62. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.Google Scholar
  63. Hernandez-Castillo, G. R., Rothwell, G. W., & Mapes, G. (2001). Thucydiaceae fam. Nov., with a review and reevaluation of Paleozoic walchian conifers. International Journal of Plant Sciences, 162, 1155–1185.CrossRefGoogle Scholar
  64. Hernandez-Leon, S., Gernandt, D. S., Perez de la Rosa, J. A., & Jardon-Barbolla, L. (2013). Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferred from plastid DNA. PLoS One, 8(7), e70501. https://doi.org/10.1371/journal.pone.0070501.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Hill, R. S., & Brodribb, T. J. (1999). Southern conifers in time and space. Australian Journal of Botany, 47, 639–696.CrossRefGoogle Scholar
  66. Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (2008). Plant systematics: a phylogenetics approach (3rd ed.). Sunderland: Sinauer Associates, Inc.Google Scholar
  67. Kelch, D. G. (1998). Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany, 85, 986.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Knapp, M., Mudaliar, R., Havell, D., Wagstaff, S. J., & Lockhart, P. J. (2007). The drowning of New Zealand and the problem of Agathis. Systematic Biology, 56(5), 862–870.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Krupkin, A. B., Liston, A., & Strauss, S. H. (1996). Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany, 83(4), 489–498.CrossRefGoogle Scholar
  70. Kunzmann, L. (2007). Araucariaceae (Pinopsida): Aspects in palaeobiogeography and palaeobiodiveristy in the Mesozoic. Zoologischer Anzeiger, 246, 257–277.CrossRefGoogle Scholar
  71. Lawrence, G. H. M. (1951). Taxonomy of vascular plants. New York/Toronto: Macmillan Company.Google Scholar
  72. Li, H. (1953). A reclassification of Libocedrus and Cupressaceae. Journal of the Arnold Arboretum, 34, 17–35.Google Scholar
  73. Liston, A., Robinson, W. A., Piñero, D., & Alvarez-Buylla, E. R. (1999). Phylogenetics of Pinus(Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer regions sequences. Molecular Phylogenetics and Evolution, 11, 95–109.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Liston, A., Parker-Defeniks, M., Syring, J. V., Willyard, A., & Cronn, R. (2007). Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: A case study in Pinus lambertiana. Molecular Ecology, 16(18), 3926–3937.PubMedPubMedCentralGoogle Scholar
  75. Little, D. P. (2006). Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany, 31(3), 461–480.CrossRefGoogle Scholar
  76. Little, E. L., Jr., & Critchfield, W. B. (1969). Subdivisions of the genus Pinus (p. 1144). Washington, DC: USDA Forest Service Miscellaneous Publication.Google Scholar
  77. Liu, N., Zhu, Y., Wei, Z., Chen, J., Wang, Q., Jian, S., Zhou, D., et al. (2009). Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin, 54, 2648–2655.Google Scholar
  78. Lockwood, J. D., Aleksic, J. M., Zou, J., Wang, J., Liu, J., & Renner, S. S. (2013). A new phylogeny for the genus Picea from plastid, mitochrondrial, and nuclear sequences. Molecular Phylogenetics and Evolution, 69, 717–727.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lu, Y., Ran, J.-H., Guo, D.-M., Yang, Z.-Y., & Wang, X.-Q. (2014b). Phylogeny and edivergence times of gymnopserms inferred from single-copy nuclear genes. PLoS One, 9(9), e107679. https://doi.org/10.1371/journal.pone.0107679.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Magallón, S., & Sanderson, M. J. (2002). Relationships among seed plants inferred from highly conserved genes: Sorting conflicting phylogenetic signals among ancient lineages. American Journal of Botany, 89(12), 1991–2006.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mao, K., Hao, G., Liu, J., Adams, R. P., & Milne, R. I. (2010). Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytologist, 188(1), 254–272.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R. R., & Renner, S. S. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7793–7798.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mayden, R. L. (1992). Systematics, historical ecology, and North American freshwater fishes. Stanford: Stanford University Press.Google Scholar
  84. Meyer-Berthaud, B., Scheckler, S. E., & Wendt, J. (1999). Archaeopteris is the earliest known modern tree. Nature, 398, 700–701.CrossRefGoogle Scholar
  85. Miller, C. N., Jr. (1977). Mesozoic conifers. The Botanical Review, 43(2), 217.CrossRefGoogle Scholar
  86. Miller, C. N., Jr. (1988). The Origin of modern conifer families. In C. B. Beck (Ed.), Origin and evolution of gymnosperms. New York: Columbia University Press.Google Scholar
  87. Nathorst, A. G. (1908). Palaobotanische Mitteilungen, 7: Uber Palissya, Stachyotaxus und Palaeotaxus. Kungliga Svenska Veterskapsakademiens Handlingar, 43: 3–37. (from Rothwell et al. 2012).Google Scholar
  88. Ohsawa, T., Nishida, M., & Nishida, H. (1991). Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien IX. A petrified cone of Sciadopitys from the Upper Cretaceous of Hokkaido. Journal of Phytogeography and Taxonomy., 39, 97–105.Google Scholar
  89. Parks, M., Cronn, R., & Liston, A. (2009). Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 7, 84. https://doi.org/10.1186/1741-7007-7-84. http://www.biomedcentral.com/1741-7007/7/84.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Parks, M., Cronn, R., & Liston, A. (2012). Separating the wheat from the chaff: Mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evolutionary Biology, 2012(12), 100. http://www.biomedcentral.com/1471-2148/12/100.CrossRefGoogle Scholar
  91. Pilger, R. (1926). Klasse Coniferae, pp. 121–403. In A. Engler & R. Prantl (Eds.), Die natÜrelichen Pflanzenfamilien (ed. 2, vol. e). Leipsiz: Verlag von Wilhelm Englemann. (in German).Google Scholar
  92. Pittermann, J., Stuart, S. A., Dawson, T. E., & Moreau, A. (2012). Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences, 109(24), 9647–9652.CrossRefGoogle Scholar
  93. Price, R. A., Liston, A., & Strauss, S. H. (1998). Phylogeny and systematics of Pinus. P. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 49–68). Cambridge: Cambridge Univ. Press.Google Scholar
  94. Quinn, C. J. (1982). Taxonomy of Cacrydium. Australian Journal of Botany, 30, 311–320.CrossRefGoogle Scholar
  95. Rothwell, G. W. (1988). Cordaitales. In C. B. Beck (Ed.), Origin and evolution of gymnopserms. New York: Columbia University Press.Google Scholar
  96. Rothwell, G. W., Mapes, G., & Mapes, R. H. (1997). Late Paleozoic conifers of North America: Structure, diversity and occurrences. Review of Palaeobotany and Palynology, 95, 95–113.CrossRefGoogle Scholar
  97. Rothwell, G. W., Mapes, G., & Hernandez-Castillo, G. R. (2005). Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon, 54(3), 733–750.CrossRefGoogle Scholar
  98. Rothwell, G. W. G. M., Stockey, R. A., & Hilton, J. (2012). The seed cone Eathiestrobus Gen. Nov.: Fossil evidence for a Jurassic origin of Pinaceae. American Journal of Botany, 99(4), 708–720.PubMedCrossRefGoogle Scholar
  99. Ruhsam, M., Rai, H. S., Mathews, S., Ross, T. G., Graham, S. W., Raubeson, L. A., Mei, W., et al. (2015). Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria. Molecular Ecology Resources, 15(5), 1067–1078.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Saladin, B., Leslie, A. B., Wüest, R. O., Litsios, G., Conti, E., Salamin, N., & Zimmermann, N. E. (2017). Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. BMC Evolutionary Biology, 17(1), 95.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Semerikova, S. A., & Semerikov, V. L. (2014). Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Russian journal of genetics, 50(1), pp.7–19.Google Scholar
  102. Scheckler, S. E. (2003). 2003. Consequences of rapid expansion of late Devonian forests. Session No. 146. Geological Society of America Abstracts with Programs, 35(6), 385.Google Scholar
  103. Schlarbaum, S. E., & Tsuchiya, T. (1984b). Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution, 147, 29–54.CrossRefGoogle Scholar
  104. Setoguchi, H., Osawa, T. A., Pintaud, J.-C., Jaffre, T., & Veillon, J.-M. (1998). Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany, 85(11), 1507–1516.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sinclair, W. T., Mill, R. R., Gardner, M. F., Woltz, P., Jaffré, T., Preston, J., et al. (2002). Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution, 233(1–2), 79–104.CrossRefGoogle Scholar
  106. Singh, G. (2004). Plant systematics: An integrated approach. Enfield: Science Publishers.Google Scholar
  107. Stefanovic, S., Jager, M., Deutsch, J., Broutin, J., & Masselot, M. (1998). Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany, 85, 688–697.CrossRefGoogle Scholar
  108. Stevens, P. F. (1994). The development of biological systematics: Antoine-Laurent de Jussieu, nature, and the natural system. New York: Columbia University Press.Google Scholar
  109. Stockey, R. A. (1982). The Araucariaceae: An evolutionary perspective. Review of Palaebotany and Palynology, 37, 133–154.CrossRefGoogle Scholar
  110. Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany, 99(2), 349–364.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Strauss, S. H., Doerksen, A. H., & Byrne, J. R. (1990). Evolutionary relationships of Douglas-fir and its relatives from DNA restriction fragment analysis. Canadian Journal of Botany, 68, 1502–1510.CrossRefGoogle Scholar
  112. Syring, J., Willyard, A., Cronn, R., & Liston, A. (2005). Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. American Journal of Botany, 92, 2086–2100.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Syring, J., Farrell, K., Businsky, R., Cronn, R., & Liston, A. (2007). Widespread genealogical nonmonomphyly in species of Pinus subgenus Strobus. Systematic Biology, 56(2), 163–181.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Taylor, T. N., Taylor, E. L., & Krings, M. (2009). The biology and evolution of fossil plants (2nd ed.). Englewood Cliffs: Prentice Hall.Google Scholar
  115. Terry, R. G., & Adams, R. P. (2015). A molecular re-examination of phylogenetic relationships among Juniperus, Cupressus, and the Hesperocyparis-Callitropsis-Xanthrocyparis clades of Cupressaceae. Phytologia, 97(1), 67–75.Google Scholar
  116. Terry, R. G., Bartel, J. A., & Adams, R. P. (2012). Phylogenetic relationships among the New World cypresses (Hesperocyparis; Cupressaceae): Evidence from noncoding chloroplast DNA sequences. Plant Systematics and Evolution, 298(10), 1987–2000.CrossRefGoogle Scholar
  117. The Angiosperm Phylogeny Website. (n.d..) http://www.mobot.org/MOBOT/research/APweb/.
  118. Townrow, J. A. (1967). On Rissikia and Mataia – Podocarpaceous conifers from the lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania, 101, 103–136.Google Scholar
  119. Wang, X.-R., Tsumura, Y., Yoshimaru, H., Nagasaka, K., & Szmidt, A. E. (1999). Phylogenetic relationships of Eurasia pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. American Journal of Botany, 86, 1742–1753.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Whittall, J. B., Syring, J., Parks, M., Buenrostro, J., Dick, C., Liston, A., & Cronn, R. (2010). Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines. Molecular Ecology, 19, 100–114.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: the theory of phylogenetic systematics (2nd ed.). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  122. Willyard, A. J. S., Gernandt, D. S., Liston, A., & Cronn, R. (2007). Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution, 24(1), 90–101.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Willyard, A., Cronn, R., & Liston, A. (2009). Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution, 52(2), 498–511.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Willyard, A., Gernandt, D. S., Potter, K., Hipkins, V., Marquardt, P., Mahalovich, M. F., Langer, S. K., Telewski, F. W., Cooper, B., Douglas, C., & Finch, K. (2017). Pinus ponderosa: a checkered past obscured four species. American Journal of Botany, 104(1), 161–181.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Wolfe, J. A. (1969). Neogene floristic and vegetational history of the Pacific Northwest. Madrono, 20, 83–110.Google Scholar
  126. Xiang, Q. P., Wei, R., Shao, Y. Z., Yang, Z. Y., Wang, X. Q., & Zhang, X. C. (2015). Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Molecular Phylogenetics and Evolution, 82, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Yang, Z.-Y., Ran, J.-H., & Wang, X.-Q. (2012). Three genome-based phylogeny of Cupressaceae s.l.: Further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution, 64(3), 452–470.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations