Hybridization and Introgression

  • David B. Neale
  • Nicholas C. Wheeler


Spontaneous hybridization between taxa provides a source of genetic variation upon which selection may act. Though individual genetic variants are not new, the combinations of variants from diverse genomes found in hybrids are new (novel epistatic gene interactions), and hybrid populations may, and often do, contain more genetic diversity than their parental species (Stebbins 1959; Lewontin and Birch 1966; Grant 1971). While investigators have long debated the evolutionary significance of hybridization and the subsequent incorporation of genetic variation from one species into another, several studies reviewed in this chapter would suggest these phenomena play an important role in conifer evolution. This chapter seeks to summarize the scientific literature on hybridization and introgression in conifers with particular attention given to studies from the last quarter century. As in previous decades, much of this literature is descriptive. Increasingly, however, investigations have expanded to investigate such important principles as which speciation model is most appropriate, what are the mechanisms by which species boundaries are maintained, and how methods used to detect and measure introgression affect our interpretation of the results. Such important queries are reviewed by looking at specific case studies.


  1. Adams, R. P. (2015). Allopatric hybridization and introgression between Juniperus maritima and J. scopulorum. Evidence from nuclear and cpDNA and leaf terpenoids. Phytologia, 97, 55–66.Google Scholar
  2. Anderson, E. (1948). Hybridization of the habitat. Evolution, 2, 1–9.CrossRefGoogle Scholar
  3. Anderson, E. (1949). Introgressive Hybridization. New York, NY: Wiley.CrossRefGoogle Scholar
  4. Arcade, A., Faivre-Rampant, P., Pâques, L. E., & Prat, D. (2002). Localisation of genomic regions controlling microdensitometric parameters of wood characteristics in hybrid larches. Annals of Forest Science, 59(5–6), 607–615.CrossRefGoogle Scholar
  5. Argus, G. W. (1966). Botanical investigations in northeastern Saskatchewan: The subarctic Patterson-Hasbala Lakes region. Canadian Field-Naturalist, 80, 119–143.Google Scholar
  6. Bennuah, S. Y., Wang, T., & Aitken, S. N. (2004). Genetic analysis of the Picea sitchensis × P. glauca introgression zone in British Columbia. Forest Ecology and Management, 197(1), 65–77.CrossRefGoogle Scholar
  7. Bobola, M. S., Hillenberg, K. A., Gendreau, S. B., Eckert, R. T., Klein, A. S., & Stapelfeldt, K. (1996). Hybridization between Picea rubens and Picea mariana: Differences observed between montane and coastal island populations. Canadian Journal of Forest Research, 26(3), 444–452.CrossRefGoogle Scholar
  8. Bobowicz, M. A., & Danielewicz, W. (2000). Isoenzymatic variability in progeny of Pinus mugo Turra x Pinus sylvestris L. hybrids from Bór na Czerwonem, in experimental culture. Acta Societatis Botanicorum Poloniae, 69(2), 137–144.CrossRefGoogle Scholar
  9. Bouillé, M., Senneville, S., & Bousquet, J. (2011). Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics & Genomes, 7(3), 469–484.CrossRefGoogle Scholar
  10. Byun, K. O., Kim, M. Z. S., Shim, S. Y., Hong, S. H., & Sohn, S. I. (1989). Review of pitch-loblolly hybrid pine (Pinus rigida and P. taeda) breeding researches in Korea and future strategy. Res Rep, For Genet Res Inst, Korea, 25, 204–211.Google Scholar
  11. Chen, C., Durand, E., Forbes, F., & François, O. (2007). Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study. Molecular Ecology Notes, 7(5), 747–756.CrossRefGoogle Scholar
  12. Christensen, K. I. (1987). A morphometric study of the Pinus mugo Turra complex and its natural hybridization with P. sylvestris L.(Pinaceae). Feddes Repertorium, 98(11–12), 623–635.Google Scholar
  13. Cinget, B., Lafontaine, G., Gérardi, S., & Bousquet, J. (2015). Integrating phylogeography and paleoecology to investigate the origin and dynamics of hybrid zones: Insights from two widespread North American firs. Molecular Ecology, 24(11), 2856–2870.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Conkle, M. T., & Critchfield, W. B. (1988). Genetic variation and hybridization of ponderosa pine. In D. M. Baumgarner & J. E. Lotan (Eds.), Proceedings of ponderosa pine – The Species and its management symposium (pp. 27–43). Pullman, WA: Washington State University.Google Scholar
  15. Critchfield, W. B. (1967). Crossability and relationships of the closed-cone pines. Silvae Genetica, 16(3), 89–97.Google Scholar
  16. Critchfield, W. B. (1977). Hybridization of foxtail and bristlecone pines. Madrono, 24(4), 193–212.Google Scholar
  17. Critchfield, W. B. (1980). The genetics of lodgepole pine. Research Paper, USDA Forest Service, Washington, DC, (WO-37).Google Scholar
  18. Critchfield, W. B. (1984b). Crossability and relationships of Washoe pine. Madroño, 31(3), 144–170.Google Scholar
  19. Critchfield, W. B. (1985). The late quaternary history of lodgepole and jack pines. Canadian Journal of Forest Research, 15(5), 749–772.CrossRefGoogle Scholar
  20. Critchfield, W. B. (1986). Hybridization and classification of the white pines (Pinus section Strobus). Taxon, 35, 647–656.CrossRefGoogle Scholar
  21. Critchfield, W. B. (1988). Hybridization of the California firs. Forest Science, 34(1), 139–151.Google Scholar
  22. Critchfield, W. B. & Krugman, S. L. (1967). Crossing the western pines at Placerville, California. University of Washington Arboretum Bulletin, Seattle, Volume XXX No. 4, Winter 1967, pp. 78–81.Google Scholar
  23. Critchfield, W. B., & Little, E. L., Jr. (1966). Geographic distribution of the pines of the world (no. 991). Washington, D.C.: US Department of Agriculture, Forest Service.Google Scholar
  24. Cronn, R., & Wendel, J. F. (2004). Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 161(1), 133–142.CrossRefGoogle Scholar
  25. Cullingham, C. I., James, P., Cooke, J. E., & Coltman, D. W. (2012). Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: Mosaic structure and differential introgression. Evolutionary Applications, 5(8), 879–891.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: Massive introgression by local genes. Evolution, 62(8), 1908–1920.PubMedPubMedCentralGoogle Scholar
  27. Daoust, G., & Beaulieu, J. (2004). Genetics, breeding, improvement and conservation of Pinus strobus in Canada. In R. A. Sniezko, S. Samman, S. E. Schlarbaum, & H. B. Kriebel (Eds.), Breeding and genetic resources of five-needle pines: Growth, adaptability, and pest resistance. Proceedings RMRS-P-32 (pp. 3–11). Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  28. De La Torre, A. R., Roberts, D. R., & Aitken, S. N. (2014a). Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Molecular Ecology, 23(8), 2046–2059.CrossRefGoogle Scholar
  29. De La Torre, A. R., Wang, T., Jaquish, B., & Aitken, S. N. (2014c). Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: Implications for forest management under climate change. New Phytologist, 201(2), 687–699.CrossRefGoogle Scholar
  30. De Lafontaine, G., Prunier, J., Gérardi, S., & Bousquet, J. (2015). Tracking the progression of speciation: Variable patterns of introgression across the genome provide insights on the species delimitation between progenitor–derivative spruces (Picea mariana × P. rubens). Molecular Ecology, 24(20), 5229–5247.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Du, F. K., Petit, R. J., & Liu, J. Q. (2009). More introgression with less gene flow: Chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology, 18(7), 1396–1407.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Du, F. K., Peng, X. L., Liu, J. Q., Lascoux, M., Hu, F. S., & Petit, R. J. (2011). Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau. New Phytologist, 192(4), 1024–1033.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Duffield, J. W., & Righter, F. I. (1953). Annotated list of pine hybrids made at the Institute of Forest Genetics (Research note (California Forest and Range Experiment Station); no. 86) (pp. 1–9). Berkeley, CA: U.S. Department of Agriculture, Forest Service, California Forest and Range Experiment Station.Google Scholar
  34. Dungey, H. S. (2001). Pine hybrids—A review of their use performance and genetics. Forest Ecology and Management, 148(1), 243–258.CrossRefGoogle Scholar
  35. Eckenwalder, J. E. (2009). Conifers of the world. Portland: Timber Press.Google Scholar
  36. Edwards-Burke, M., Hamrick, J., & Price, R. (1997). Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). American Journal of Botany, 84(7), 879–879.PubMedCrossRefGoogle Scholar
  37. Epperson, B. K., Telewski, F. W., & Willyard, A. (2009). Chloroplast diversity in a putative hybrid swarm of Ponderosae (Pinaceae). American Journal of Botany, 96(3), 707–712.PubMedCrossRefGoogle Scholar
  38. Ernst, S. G., Hanover, J. W., & Keathley, D. E. (1990). Assessment of natural interspecific hybridization of blue and Engelmann spruce in southwestern Colorado. Canadian Journal of Botany, 68(7), 1489–1496.CrossRefGoogle Scholar
  39. Fassett, N. C. (1944). Juniperus virginiana, J. horizontalis and J. scopulorum II. Hybrid swarms of J. virginiana and J. scopulorum. Bulletin of the Torrey Botanical Club, 71(5), 475–483.CrossRefGoogle Scholar
  40. Garrett, P. W. (1979). Species hybridization in the genus Pinus. USDA Forest Service Research Paper NE-436.Google Scholar
  41. Gaudeul, M., Gardner, M. F., Thomas, P., Ennos, R. A., & Hollingsworth, P. M. (2014). Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: Nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species. BMC Evolutionary Biology, 14(1), 1–21.CrossRefGoogle Scholar
  42. Gernandt, D. S., Hernández-León, S., Salgado-Hernández, E., & Pérez de La Rosa, J. A. (2009). Phylogenetic relationships of Pinus subsection Ponderosae inferred from rapidly evolving cpDNA regions. Systematic Botany, 34(3), 481–491.CrossRefGoogle Scholar
  43. Gleiker, K. P., & Carroll, A. L. (2011). Rating introgression between lodgepole and jack pine at the individual tree level using morphological traits. Northern Journal of Applied Forestry, 28(3), 138–145.Google Scholar
  44. Godbout, J., Yeh, F. C., & Bousquet, J. (2012). Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex. Ecology and Evolution, 2(8), 1853–1866.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gompert, Z., & Alex Buerkle, C. (2010). INTROGRESS: A software package for mapping components of isolation in hybrids. Molecular Ecology Resources, 10(2), 378–384.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Grant, V. (1971). Plant speciation. New York and London: Columbia University Press.Google Scholar
  47. Grossnickle, S. C., Sutton, B. C., Folk, R. S., & Gawley, R. J. (1996). Relationship between nuclear DNA markers and physiological parameters in Sitka × interior spruce populations. Tree Physiology, 16(6), 547–555.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Grossnickle, S. C., Sutton, B. C., Fan, S., & King, J. (1997). Characterization of Sitka × interior spruce hybrids: A biotechnological approach to seedlot determination. The Forestry Chronicle, 73(3), 357–362.CrossRefGoogle Scholar
  49. Hall, M. T. (1952). Variation and hybridization in Juniperus. Annals of the Missouri Botanical Garden, 39(1), 1–64.CrossRefGoogle Scholar
  50. Hamilton, J. A., Lexer, C., & Aitken, S. N. (2013a). Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytologist, 197(3), 927–938.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hamilton, J. A., Lexer, C., & Aitken, S. N. (2013b). Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Molecular Ecology, 22(3), 827–841.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hare, R. C., & Switzer, G. L. (1969). Introgression with shortleaf pine may explain rust resistance in western loblolly pine (USDA Forest Service, research note SO-88). New Orleans, LA: Southern Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture.Google Scholar
  53. Haselhorst, M. S., & Buerkle, C. A. (2013). Population genetic structure of Picea engelmannii, P. glauca and their previously unrecognized hybrids in the central Rocky Mountains. Tree Genetics & Genomes, 9(3), 669–681.CrossRefGoogle Scholar
  54. Hawley, G. J., & DeHayes, D. H. (1985). Hybridization among several North American firs. II. Hybrid verification. Canadian Journal of Forest Research, 15(1), 50–55.CrossRefGoogle Scholar
  55. Heuertz, M., Teufel, J., González-Martínez, S. C., Soto, A., Fady, B., Alía, R., & Vendramin, G. G. (2010). Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. Journal of Biogeography, 37(3), 541–556.CrossRefGoogle Scholar
  56. Hyun, S. K. (1977). Interspecific hybridization in pines with the special reference to Pinus rigida x P. taeda. Silvae Genetica, 25, 188–191.Google Scholar
  57. Ito, M., Suyama, Y., Ohsawa, T. A., & Watano, Y. (2008). Airborne-pollen pool and mating pattern in a hybrid zone between Pinus pumila and P. parviflora var. pentaphylla. Molecular Ecology, 17(23), 5092–5103.PubMedCrossRefGoogle Scholar
  58. Jaramillo-Correa, J. P., & Bousquet, J. (2003). New evidence from mitochondrial DNA of a progenitor-derivative species relationship between black spruce and red spruce (Pinaceae). American Journal of Botany, 90(12), 1801–1806.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jaramillo-Correa, J. P., & Bousquet, J. (2005). Mitochondrial genome recombination in the zone of contact between two hybridizing conifers. Genetics, 171(4), 1951–1962.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jasińska, A. K., Wachowiak, W., Muchewicz, E., Boratyńska, K., Montserrat, J. M., & Boratyński, A. (2010). Cryptic hybrids between Pinus uncinata and P. sylvestris. Botanical Journal of the Linnean Society, 163(4), 473–485.CrossRefGoogle Scholar
  61. Khasa, P. D., & Dancik, B. P. (1996). Rapid identification of white-Engelmann spruce species by RAPD markers. Theoretical and Applied Genetics, 92(1), 46–52.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kondo, T., Tsumura, Y., Kawahara, T., & Okamura, M. (1998). Paternal inheritance of chloroplast and mitochondrial DNA in interspecific hybrids of Chamaecyparis spp. Japanese Journal of Breeding, 48(2), 177–179.CrossRefGoogle Scholar
  63. Kormutak, A., Vooková, B., Čamek, V., Salaj, T., Galgóci, M., Maňka, P., Boleček, P., Kuna, R., Kobliha, J., Lukáčik, I., & Gömöry, D. (2013). Artificial hybridization of some Abies species. Plant Systematics and Evolution, 299(6), 1175–1184.CrossRefGoogle Scholar
  64. Kou, Y. X., Shang, H. Y., Mao, K. S., Li, Z. H., Rushforth, K., & Adams, R. P. (2014). Nuclear and cytoplasmic DNA sequence data further illuminate the genetic composition of Leyland cypresses. Journal of the American Society for Horticultural Science, 139(5), 558–566.CrossRefGoogle Scholar
  65. Krutovskii, K. V., & Bergmann, F. (1995). Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity, 74(5), 464–480.CrossRefGoogle Scholar
  66. Lanner, R. M., & Phillips, A. M., III. (1992). Natural hybridization and introgression of pinyon pines in northwestern Arizona. International Journal of Plant Sciences, 153(2), 250–257.CrossRefGoogle Scholar
  67. Larsen, C. S. (1956). Genetics in silviculture. Fairlawn, New Jersey: Essential Books.Google Scholar
  68. Latta, R. G., & Mitton, J. B. (1999). Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution, 53(3), 769–776.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ledig, F. T. (2000). Founder effects and the genetic structure of Coulter pine. Journal of Heredity, 91(4), 307–315.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lewandowski, A., Nikkanen, T., & Burczyk, J. (1994). Production of hybrid seed in a seed orchard of two larch species, Larix sibirica and Larix decidua. Scandinavian Journal of Forest Research, 9(1–4), 214–217.CrossRefGoogle Scholar
  71. Lewontin, R. C., & Birch, L. C. (1966). Hybridization as a source of variation for adaptation to new environments. Evolution, 20, 315–336.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Li, Z., Zou, J., Mao, K., Lin, K., Li, H., Liu, J., Källman, T., & Lascoux, M. (2012b). Population genetic evidence for complex evolutionary histories of four high altitude juniper species in the Qinghai–Tibetan Plateau. Evolution, 66(3), 831–845.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Liston, A., Parker-Defeniks, M., Syring, J. V., Willyard, A., & Cronn, R. (2007). Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: A case study in Pinus lambertiana. Molecular Ecology, 16(18), 3926–3937.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Little, E. L. (1953). A natural hybrid spruce in Alaska. Journal of Forestry, 51(10), 745–747.Google Scholar
  75. Little, D. P. (2004). Documentation of hybridization between Californian cypresses: Cupressus macnabiana × C. sargentii. Systematic Botany, 29(4), 825–833.CrossRefGoogle Scholar
  76. Liu, Z. L., Cheng, C., & Li, J. (2012). High genetic differentiation in natural populations of Pinus henryi and Pinus tabuliformis as revealed by nuclear microsatellites. Biochemical Systematics and Ecology, 42, 1–9.CrossRefGoogle Scholar
  77. Luo, S., Zou, H., & Liang, S. (2000). Study on the introgressive hybridization between Pinus hwangshanensis and P. massoniana. Scientia Silvae Sinicae, 37(6), 118–122.Google Scholar
  78. MacDonald, G. M., & Cwynar, L. C. (1985). A fossil pollen based reconstruction of the late Quaternary history of lodgepole pine (Pinus contorta ssp. latifolia) in the western interior of Canada. Canadian Journal of Forest Research, 15(6), pp.1039–1044.Google Scholar
  79. Manley, S. A. M. (1972). The occurrence of hybrid swarms of red and black spruces in Central New Brunswick. Canadian Journal of Forest Research, 2(4), 381–391.CrossRefGoogle Scholar
  80. Meirmans, P. G., Gros-Louis, M. C., Lamothe, M., Perron, M., Bousquet, J., & Isabel, N. (2014). Rates of spontaneous hybridization and hybrid recruitment in co-existing exotic and native mature larch populations. Tree Genetics & Genomes, 10(4), 965–975.CrossRefGoogle Scholar
  81. Millar, C. I., & Critchfield, W. B. (1988). Crossability and relationships of Pinus muricata (Pinaceae). Madrono, 35(1), 39–53.Google Scholar
  82. Mirov, N. T. (1956). Composition of turpentine of lodgepole × jack pine hybrids. Canadian Journal of Botany, 34(4), 443–457.CrossRefGoogle Scholar
  83. Moriguchi, Y., Kita, K., Uchiyama, K., Kuromaru, M., & Tsumura, Y. (2008). Enhanced hybridization rates in a Larix gmelinii var. japonica × L. kaempferi interspecific seed orchard with a single maternal clone revealed by cytoplasmic DNA markers. Tree Genetics & Genomes, 4(4), 637–645.CrossRefGoogle Scholar
  84. Moss, E. H. (1949). Natural pine hybrids in Alberta. Canadian Journal of Research, 27(5), 218–229.CrossRefGoogle Scholar
  85. Neale, D. B., & Sederoff, R. R. (1988). Inheritance and evolution of conifer organelle genomes. In Genetic manipulation of woody plants (pp. 251–264). Springer US.Google Scholar
  86. Niklas, K. J. (1997). The evolutionary biology of plants. University of Chicago Press.Google Scholar
  87. Nikles, D. G. (1992, October). Hybrids of forest trees: The bases of hybrid superiority and a discussion of breeding methods. In IUFRO Conference S (Vol. 2, pp. 333–347).Google Scholar
  88. Nikles, D. G. (2000). Experience with some Pinus hybrids in Queensland, Australia. In Hybrid breeding and genetics of forest trees. Proc. Queensland Forest Research Institute/Cooperative Research Center – Sustainable Production Forestry Symposium (pp. 27–43). Noosa, Queensland, Australia.Google Scholar
  89. Ogilvie, R. T., & Rudloff, E. V. (1968). Chemosystematic studies in the genus Picea (Pinaceae). IV. The introgression of white and Engelmann spruce as found along the Bow River. Canadian Journal of Botany, 46(7), 901–908.CrossRefGoogle Scholar
  90. Oline, D. K. (2008). Geographic variation in chloroplast haplotypes in the California red fir-noble fir species complex and the status of Shasta red fir. Canadian Journal of Forest Research, 38(10), 2705–2710.CrossRefGoogle Scholar
  91. Perron, M., & Bousquet, J. (1997). Natural hybridization between black spruce and red spruce. Molecular Ecology, 6(8), 725–734.CrossRefGoogle Scholar
  92. Pooler, M. R., Riedel, L. G., Bentz, S. E., & Townsend, A. M. (2002). Molecular markers used to verify interspecific hybridization between hemlock (Tsuga) species. Journal of the American Society for Horticultural Science, 127(4), 623–627.CrossRefGoogle Scholar
  93. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.PubMedPubMedCentralGoogle Scholar
  94. Rajora, O. P., & Dancik, B. P. (2000). Population genetic variation, structure, and evolution in Engelmann spruce, white spruce, and their natural hybrid complex in Alberta. Canadian Journal of Botany, 78(6), 768–780.CrossRefGoogle Scholar
  95. Ren, G. P., Abbott, R. J., Zhou, Y. F., Zhang, L. R., Peng, Y. L., & Liu, J. Q. (2012). Genetic divergence, range expansion and possible homoploid hybrid speciation among pine species in Northeast China. Heredity, 108(5), 552–562.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Robledo-Arnuncio, J. J., Navascués, M., González-Martínez, S. C., & Gil, L. (2009). Estimating gametic introgression rates in a risk assessment context: A case study with Scots pine relicts. Heredity, 103(5), 385–393.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Roche, L. (1969). A genecological study of the genus Picea in British Columbia. New Phytologist, 68, 505–554.CrossRefGoogle Scholar
  98. Rudolph, T. D., & Yeatman, C. W. (1982). Genetics of jack pine. (WO-38). Washington, DC: U.S. Dept. of Agriculture, Forest Service.Google Scholar
  99. Schoenike, R. E., (1976). Geographical variations in jack pine (Pinus banksiana), Univ. Minnesota Agric. Exp. Stn., Tech. Bull, 304, p.47.Google Scholar
  100. Semerikova, S. A., Semerikov, V. L., & Lascoux, M. (2011). Post-glacial history and introgression in Abies (Pinaceae) species of the Russian Far East inferred from both nuclear and cytoplasmic markers. Journal of Biogeography, 38(2), 326–340.CrossRefGoogle Scholar
  101. Senjo, M., Kimura, K., Watano, Y., Ueda, K., & Shimizu, T. (1999). Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). Journal of Plant Research, 112(1), 97–105.CrossRefGoogle Scholar
  102. Shepherd, M., Cross, M., Dieters, M. J., & Henry, R. (2002). Branch architecture QTL for Pinus elliottii var. elliottii x Pinus caribaea var. hondurensis hybrids. Annals of Forest Science, 59(5–6), 617–625.CrossRefGoogle Scholar
  103. Shepherd, M., Huang, S., Eggler, P., Cross, M., Dale, G., Dieters, M., & Henry, R. (2006). Congruence in QTL for adventitious rooting in Pinus elliottii × Pinus caribaea hybrids resolves between and within-species effects. Molecular Breeding, 18(1), 11–28.CrossRefGoogle Scholar
  104. Staszkiewicz, J. (1993). Variability of Pinus mugo x P. Sylvestris [Pinaceae] hybrid swarm in the Tisovnica Nature Reserve [Slovakia]. Polish Botanical Studies, (05), 33–41.Google Scholar
  105. Stebbins, G. L. (1959). The role of hybridization in evolution. Proceedings of the American Philosophical Society, 103(2), 231–251.Google Scholar
  106. Steinhoff, R. J. (1980). Distribution, ecology, silvicultural characteristics, and genetics of the Abies grandis – Abies concolor complex. Washington, DC: FAO.Google Scholar
  107. Stewart, J. F., Liu, Y., Tauer, C. G., & Nelson, C. D. (2010). Microsatellite versus AFLP analyses of pre-management introgression levels in loblolly pine (Pinus taeda L.) and shortleaf pine (P. echinata mill.). Tree Genetics & Genomes, 6(6), 853–862.CrossRefGoogle Scholar
  108. Stewart, J. F., Tauer, C. G., & Nelson, C. D. (2012). Bidirectional introgression between loblolly pine (Pinus taeda L.) and shortleaf pine (P. echinata mill.) has increased since the 1950s. Tree Genetics & Genomes, 8(4), 725–735.CrossRefGoogle Scholar
  109. Strasburg, J. L., Sherman, N. A., Wright, K. M., Moyle, L. C., Willis, J. H., & Rieseberg, L. H. (2012). What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1587), 364–373.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Strong, W. L. (2010). Pinus contorta var. yukonensis var. nov. (Pinaceae) from South–Central Yukon, Canada. Nordic Journal of Botany, 28(4), 448–452.Google Scholar
  111. Strong, W. L., & Hills, L. V. (2006). Taxonomy and origin of present-day morphometric variation in Picea glauca × P. engelmannii seed-cone scales in North America. Botany, 84(7), 129–1141.Google Scholar
  112. Sun, Y., Abbott, R. J., Li, L., Li, L., Zou, J., & Liu, J. (2014). Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai–Tibet Plateau: Homoploid hybrid origin and Pleistocene expansion. Molecular Ecology, 23(2), 343–359.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Sutton, B. C. S., Pritchard, S. C., Gawley, J. R., Newton, C. H., & Kiss, G. K. (1994). Analysis of Sitka spruce-interior spruce introgression in British Columbia using cytoplasmic and nuclear DNA probes. Canadian Journal of Forest Research, 24(2), 278–285.CrossRefGoogle Scholar
  114. Szmidt, A. E., & Wang, X. R. (1993). Molecular systematics and genetic differentiation of Pinus sylvestris (L.) and P. densiflora (Sieb. et Zucc.). Theoretical and Applied Genetics, 86(2–3), 159–165.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Szmidt, A. E., El-Kassaby, Y. A., Sigurgeirsson, A., Alden, T., Lindgren, D., & Hällgren, J. E. (1988b). Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of chloroplast DNA. Theoretical and Applied Genetics, 76(6), 841–845.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Tauer, C. G., Stewart, J. F., Will, R. E., Lilly, C. J., Guldin, J. M., & Nelson, C. D. (2012). Hybridization leads to loss of genetic integrity in shortleaf pine: Unexpected consequences of pine management and fire suppression. Journal of Forestry, 110(4), 216–224.CrossRefGoogle Scholar
  117. Terry, R. G. (2010). Re-evaluation of morphological and chloroplast DNA variation in Juniperus osteosperma Hook and Juniperus occidentalis Torr. Little (Cupressaceae) and their putative hybrids. Biochemical Systematics and Ecology, 38(3), 349–360.CrossRefGoogle Scholar
  118. Terry, R. G., Nowak, R. S., & Tausch, R. J. (2000). Genetic variation in chloroplast and nuclear ribosomal DNA in Utah juniper (Juniperus osteosperma, Cupressaceae): Evidence for interspecific gene flow. American Journal of Botany, 87(2), 250–258.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Tsutsui, K., Suwa, A., Sawada, K. I., Kato, T., Ohsawa, T. A., & Watano, Y. (2009). Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae). Journal of Plant Research, 122(5), 509–521.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Volkova, P., Shipunov, A., Borisova, P., Moseng, R., & Ivens, R. (2014). In search of hybridity: The case of Karelian spruces. Silva Fennica, 48(2), 1072–1085.CrossRefGoogle Scholar
  121. Wachowiak, W., Odrzykoski, I., Myczko, Ł., & Prus-Głowacki, W. (2006). Lack of evidence on hybrid swarm in the sympatric population of Pinus mugo and P. sylvestris. Flora-Morphology, Distribution, Functional Ecology of Plants, 201(4), 307–316.CrossRefGoogle Scholar
  122. Wagner, D. B., Furnier, G. R., Saghai-Maroof, M. A., Williams, S. M., Dancik, B. P., & Allard, R. W. (1987). Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proceedings of the National Academy of Sciences, 84(7), 2097–2100.Google Scholar
  123. Wagner, D. B., Sun, Z. X., Govindaraju, D. R., & Dancik, B. P. (1991b). Spatial patterns of chloroplast DNA and cone morphology variation within populations of a Pinus banksiana – Pinus contorta sympatric region. American Naturalist, 138, 156–170.CrossRefGoogle Scholar
  124. Wang, X. R., & Szmidt, A. E. (1994). Hybridization and chloroplast DNA variation in a Pinus species complex from Asia. Evolution, 48, 1020–1031.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Wang, B., Mao, J. F., Gao, J. I. E., Zhao, W. E. I., & Wang, X. R. (2011). Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Molecular Ecology, 20(18), 3796–3811.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wang, J., Abbott, R. J., Ingvarsson, P. K., & Liu, J. (2014). Increased genetic divergence between two closely related fir species in areas of range overlap. Ecology and Evolution, 4(7), 1019–1029.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang, X., Lu, J., Yue, W., Li, L., Zou, J., Li, X., He, X., Duan, B., & Liu, J. (2016). Determining the extent and direction of introgression between three spruce species based on molecular markers from three genomes with different rates of gene flow. Plant Systematics and Evolution, 302(6), 691–701.CrossRefGoogle Scholar
  128. Watano, Y., Imazu, M., & Shimizu, T. (1995). Chloroplast DNA typing by PCR-SSCP in the Pinus pumila – P. parviflora var. pentaphylla complex (Pinaceae). Journal of Plant Research, 108(4), 493–499.CrossRefGoogle Scholar
  129. Watano, Y., Kanai, A., & Tani, N. (2004). Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. American Journal of Botany, 91(1), 65–72.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Webby, R. F., Markham, K. R., & Molloy, B. P. (1987). The characterisation of New Zealand Podocarpus hybrids using flavonoid markers. New Zealand Journal of Botany, 25(3), 355–366.CrossRefGoogle Scholar
  131. Wheeler, N. C., & Guries, R. P. (1987). A quantitative measure of introgression between lodgepole and jack pines. Canadian Journal of Botany, 65(9), 1876–1885.Google Scholar
  132. Wheeler, N. C., Steiner, K. C., Schlarbaum, S. E., & Neale, D. B. (2015). The evolution of forest genetics and tree improvement research in the United States. Journal of Forestry, 113(5), 500–510.Google Scholar
  133. Willyard, A., Cronn, R., & Liston, A. (2009). Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution, 52(2), 498–511.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wright, J. W. (1955). Species crossability in spruce in relation to distribution and taxonomy. Forest Science, 1(4), 319–349.Google Scholar
  135. Wright, J. W. (1959). Species hybridisation in the White Pines. Forest Science, 5(3), 210–222.Google Scholar
  136. Wright, J. W., & Gabriel, W. J. (1958). Species hybridization in the hard pines, series Sylvestres. Silvae Genetica, 7, 109–115.Google Scholar
  137. Wu, C. I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14(6), 851–865.CrossRefGoogle Scholar
  138. Wu, H. X., Ying, C. C., & Muir, J. A. (1996). Effect of geographic variation and jack pine introgression on disease and insect resistance in lodgepole pine. Canadian Journal of Forest Research, 26(5), 711–726.CrossRefGoogle Scholar
  139. Xing, F., Mao, J. F., Meng, J., Dai, J., Zhao, W., Liu, H., Xing, Z., Zhang, H., Wang, X. R., & Li, Y. (2014). Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution, 4(10), 1890–1902.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Xu, S., Tauer, C. G., & Nelson, C. D. (2008). Natural hybridization within seed sources of shortleaf pine (Pinus echinata mill.) and loblolly pine (Pinus taeda L.). Tree Genetics & Genomes, 4(4), 849–858.CrossRefGoogle Scholar
  141. Yang, R. C., Ye, Z., & Hiratsuka, Y. (1999). Susceptibility of Pinus contorta - Pinus banksiana complex to Endocronartium harknessii: Host-pathogen interactions. Canadian Journal of Botany, 77(7), 1035–1043.CrossRefGoogle Scholar
  142. Ye, T. Z., Yang, R. C., & Yeh, F. C. (2002). Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA. Genome, 45(3), 530–540.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Yeh, F. C., & Arnott, J. T. (1986). Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Canadian Journal of Forest Research, 16(4), 791–798.CrossRefGoogle Scholar
  144. Yu, H., Ge, S., & Hong, D. Y. (2000). Allozyme diversity and population genetic structure of Pinus densata Master in northwestern Yunnan, China. Biochemical Genetics, 38(5–6), 138–146.CrossRefGoogle Scholar
  145. Zhou, Y. F., Abbott, R. J., Jiang, Z. Y., Du, F. K., Milne, R. I., & Liu, J. Q. (2010a). Gene flow and species delimitation: A case study of two pine species with overlapping distributions in Southeast China. Evolution, 64(8), 2342–2352.PubMedPubMedCentralGoogle Scholar
  146. Zhou, L., Creech, D. L., Krauss, K. W., Yunlong, Y., & Kulhavy, D. L. (2010b). Can we improve the salinity tolerance of genotypes of Taxodium by using varietal and hybrid crosses? Hortscience, 45(12), 1773–1778.CrossRefGoogle Scholar
  147. Zobel, B. J. (1953). Are there natural loblolly-shortleaf pine hybrids? Journal of Forestry, 51(7), 494–495.Google Scholar
  148. Zou, J., Sun, Y., Li, L., Wang, G., Yue, W., Lu, Z., Wang, Q., & Liu, J. (2013). Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Annals of Botany, 112(9), 1829–1844.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations