Skip to main content

Hybridization and Introgression

  • Chapter
  • First Online:

Abstract

Spontaneous hybridization between taxa provides a source of genetic variation upon which selection may act. Though individual genetic variants are not new, the combinations of variants from diverse genomes found in hybrids are new (novel epistatic gene interactions), and hybrid populations may, and often do, contain more genetic diversity than their parental species (Stebbins 1959; Lewontin and Birch 1966; Grant 1971). While investigators have long debated the evolutionary significance of hybridization and the subsequent incorporation of genetic variation from one species into another, several studies reviewed in this chapter would suggest these phenomena play an important role in conifer evolution. This chapter seeks to summarize the scientific literature on hybridization and introgression in conifers with particular attention given to studies from the last quarter century. As in previous decades, much of this literature is descriptive. Increasingly, however, investigations have expanded to investigate such important principles as which speciation model is most appropriate, what are the mechanisms by which species boundaries are maintained, and how methods used to detect and measure introgression affect our interpretation of the results. Such important queries are reviewed by looking at specific case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, R. P. (2015). Allopatric hybridization and introgression between Juniperus maritima and J. scopulorum. Evidence from nuclear and cpDNA and leaf terpenoids. Phytologia, 97, 55–66.

    Google Scholar 

  • Anderson, E. (1948). Hybridization of the habitat. Evolution, 2, 1–9.

    Article  Google Scholar 

  • Anderson, E. (1949). Introgressive Hybridization. New York, NY: Wiley.

    Book  Google Scholar 

  • Arcade, A., Faivre-Rampant, P., Pâques, L. E., & Prat, D. (2002). Localisation of genomic regions controlling microdensitometric parameters of wood characteristics in hybrid larches. Annals of Forest Science, 59(5–6), 607–615.

    Article  Google Scholar 

  • Argus, G. W. (1966). Botanical investigations in northeastern Saskatchewan: The subarctic Patterson-Hasbala Lakes region. Canadian Field-Naturalist, 80, 119–143.

    Google Scholar 

  • Bennuah, S. Y., Wang, T., & Aitken, S. N. (2004). Genetic analysis of the Picea sitchensis × P. glauca introgression zone in British Columbia. Forest Ecology and Management, 197(1), 65–77.

    Article  Google Scholar 

  • Bobola, M. S., Hillenberg, K. A., Gendreau, S. B., Eckert, R. T., Klein, A. S., & Stapelfeldt, K. (1996). Hybridization between Picea rubens and Picea mariana: Differences observed between montane and coastal island populations. Canadian Journal of Forest Research, 26(3), 444–452.

    Article  Google Scholar 

  • Bobowicz, M. A., & Danielewicz, W. (2000). Isoenzymatic variability in progeny of Pinus mugo Turra x Pinus sylvestris L. hybrids from Bór na Czerwonem, in experimental culture. Acta Societatis Botanicorum Poloniae, 69(2), 137–144.

    Article  CAS  Google Scholar 

  • Bouillé, M., Senneville, S., & Bousquet, J. (2011). Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics & Genomes, 7(3), 469–484.

    Article  Google Scholar 

  • Byun, K. O., Kim, M. Z. S., Shim, S. Y., Hong, S. H., & Sohn, S. I. (1989). Review of pitch-loblolly hybrid pine (Pinus rigida and P. taeda) breeding researches in Korea and future strategy. Res Rep, For Genet Res Inst, Korea, 25, 204–211.

    Google Scholar 

  • Chen, C., Durand, E., Forbes, F., & François, O. (2007). Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study. Molecular Ecology Notes, 7(5), 747–756.

    Article  Google Scholar 

  • Christensen, K. I. (1987). A morphometric study of the Pinus mugo Turra complex and its natural hybridization with P. sylvestris L.(Pinaceae). Feddes Repertorium, 98(11–12), 623–635.

    Google Scholar 

  • Cinget, B., Lafontaine, G., Gérardi, S., & Bousquet, J. (2015). Integrating phylogeography and paleoecology to investigate the origin and dynamics of hybrid zones: Insights from two widespread North American firs. Molecular Ecology, 24(11), 2856–2870.

    Article  CAS  PubMed  Google Scholar 

  • Conkle, M. T., & Critchfield, W. B. (1988). Genetic variation and hybridization of ponderosa pine. In D. M. Baumgarner & J. E. Lotan (Eds.), Proceedings of ponderosa pine – The Species and its management symposium (pp. 27–43). Pullman, WA: Washington State University.

    Google Scholar 

  • Critchfield, W. B. (1967). Crossability and relationships of the closed-cone pines. Silvae Genetica, 16(3), 89–97.

    Google Scholar 

  • Critchfield, W. B. (1977). Hybridization of foxtail and bristlecone pines. Madrono, 24(4), 193–212.

    Google Scholar 

  • Critchfield, W. B. (1980). The genetics of lodgepole pine. Research Paper, USDA Forest Service, Washington, DC, (WO-37).

    Google Scholar 

  • Critchfield, W. B. (1984b). Crossability and relationships of Washoe pine. Madroño, 31(3), 144–170.

    Google Scholar 

  • Critchfield, W. B. (1985). The late quaternary history of lodgepole and jack pines. Canadian Journal of Forest Research, 15(5), 749–772.

    Article  Google Scholar 

  • Critchfield, W. B. (1986). Hybridization and classification of the white pines (Pinus section Strobus). Taxon, 35, 647–656.

    Article  Google Scholar 

  • Critchfield, W. B. (1988). Hybridization of the California firs. Forest Science, 34(1), 139–151.

    Google Scholar 

  • Critchfield, W. B. & Krugman, S. L. (1967). Crossing the western pines at Placerville, California. University of Washington Arboretum Bulletin, Seattle, Volume XXX No. 4, Winter 1967, pp. 78–81.

    Google Scholar 

  • Critchfield, W. B., & Little, E. L., Jr. (1966). Geographic distribution of the pines of the world (no. 991). Washington, D.C.: US Department of Agriculture, Forest Service.

    Google Scholar 

  • Cronn, R., & Wendel, J. F. (2004). Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 161(1), 133–142.

    Article  CAS  Google Scholar 

  • Cullingham, C. I., James, P., Cooke, J. E., & Coltman, D. W. (2012). Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: Mosaic structure and differential introgression. Evolutionary Applications, 5(8), 879–891.

    Article  PubMed  PubMed Central  Google Scholar 

  • Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: Massive introgression by local genes. Evolution, 62(8), 1908–1920.

    PubMed  Google Scholar 

  • Daoust, G., & Beaulieu, J. (2004). Genetics, breeding, improvement and conservation of Pinus strobus in Canada. In R. A. Sniezko, S. Samman, S. E. Schlarbaum, & H. B. Kriebel (Eds.), Breeding and genetic resources of five-needle pines: Growth, adaptability, and pest resistance. Proceedings RMRS-P-32 (pp. 3–11). Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • De La Torre, A. R., Roberts, D. R., & Aitken, S. N. (2014a). Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Molecular Ecology, 23(8), 2046–2059.

    Article  CAS  Google Scholar 

  • De La Torre, A. R., Wang, T., Jaquish, B., & Aitken, S. N. (2014c). Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: Implications for forest management under climate change. New Phytologist, 201(2), 687–699.

    Article  CAS  Google Scholar 

  • De Lafontaine, G., Prunier, J., Gérardi, S., & Bousquet, J. (2015). Tracking the progression of speciation: Variable patterns of introgression across the genome provide insights on the species delimitation between progenitor–derivative spruces (Picea mariana × P. rubens). Molecular Ecology, 24(20), 5229–5247.

    Article  PubMed  Google Scholar 

  • Du, F. K., Petit, R. J., & Liu, J. Q. (2009). More introgression with less gene flow: Chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology, 18(7), 1396–1407.

    Article  CAS  PubMed  Google Scholar 

  • Du, F. K., Peng, X. L., Liu, J. Q., Lascoux, M., Hu, F. S., & Petit, R. J. (2011). Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau. New Phytologist, 192(4), 1024–1033.

    Article  CAS  PubMed  Google Scholar 

  • Duffield, J. W., & Righter, F. I. (1953). Annotated list of pine hybrids made at the Institute of Forest Genetics (Research note (California Forest and Range Experiment Station); no. 86) (pp. 1–9). Berkeley, CA: U.S. Department of Agriculture, Forest Service, California Forest and Range Experiment Station.

    Google Scholar 

  • Dungey, H. S. (2001). Pine hybrids—A review of their use performance and genetics. Forest Ecology and Management, 148(1), 243–258.

    Article  Google Scholar 

  • Eckenwalder, J. E. (2009). Conifers of the world. Portland: Timber Press.

    Google Scholar 

  • Edwards-Burke, M., Hamrick, J., & Price, R. (1997). Frequency and direction of hybridization in sympatric populations of Pinus taeda and P. echinata (Pinaceae). American Journal of Botany, 84(7), 879–879.

    Article  CAS  PubMed  Google Scholar 

  • Epperson, B. K., Telewski, F. W., & Willyard, A. (2009). Chloroplast diversity in a putative hybrid swarm of Ponderosae (Pinaceae). American Journal of Botany, 96(3), 707–712.

    Article  PubMed  Google Scholar 

  • Ernst, S. G., Hanover, J. W., & Keathley, D. E. (1990). Assessment of natural interspecific hybridization of blue and Engelmann spruce in southwestern Colorado. Canadian Journal of Botany, 68(7), 1489–1496.

    Article  Google Scholar 

  • Fassett, N. C. (1944). Juniperus virginiana, J. horizontalis and J. scopulorum II. Hybrid swarms of J. virginiana and J. scopulorum. Bulletin of the Torrey Botanical Club, 71(5), 475–483.

    Article  Google Scholar 

  • Garrett, P. W. (1979). Species hybridization in the genus Pinus. USDA Forest Service Research Paper NE-436.

    Google Scholar 

  • Gaudeul, M., Gardner, M. F., Thomas, P., Ennos, R. A., & Hollingsworth, P. M. (2014). Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: Nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species. BMC Evolutionary Biology, 14(1), 1–21.

    Article  Google Scholar 

  • Gernandt, D. S., Hernández-León, S., Salgado-Hernández, E., & Pérez de La Rosa, J. A. (2009). Phylogenetic relationships of Pinus subsection Ponderosae inferred from rapidly evolving cpDNA regions. Systematic Botany, 34(3), 481–491.

    Article  Google Scholar 

  • Gleiker, K. P., & Carroll, A. L. (2011). Rating introgression between lodgepole and jack pine at the individual tree level using morphological traits. Northern Journal of Applied Forestry, 28(3), 138–145.

    Google Scholar 

  • Godbout, J., Yeh, F. C., & Bousquet, J. (2012). Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex. Ecology and Evolution, 2(8), 1853–1866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gompert, Z., & Alex Buerkle, C. (2010). INTROGRESS: A software package for mapping components of isolation in hybrids. Molecular Ecology Resources, 10(2), 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Grant, V. (1971). Plant speciation. New York and London: Columbia University Press.

    Google Scholar 

  • Grossnickle, S. C., Sutton, B. C., Folk, R. S., & Gawley, R. J. (1996). Relationship between nuclear DNA markers and physiological parameters in Sitka × interior spruce populations. Tree Physiology, 16(6), 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Grossnickle, S. C., Sutton, B. C., Fan, S., & King, J. (1997). Characterization of Sitka × interior spruce hybrids: A biotechnological approach to seedlot determination. The Forestry Chronicle, 73(3), 357–362.

    Article  Google Scholar 

  • Hall, M. T. (1952). Variation and hybridization in Juniperus. Annals of the Missouri Botanical Garden, 39(1), 1–64.

    Article  Google Scholar 

  • Hamilton, J. A., Lexer, C., & Aitken, S. N. (2013a). Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytologist, 197(3), 927–938.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, J. A., Lexer, C., & Aitken, S. N. (2013b). Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Molecular Ecology, 22(3), 827–841.

    Article  CAS  PubMed  Google Scholar 

  • Hare, R. C., & Switzer, G. L. (1969). Introgression with shortleaf pine may explain rust resistance in western loblolly pine (USDA Forest Service, research note SO-88). New Orleans, LA: Southern Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture.

    Google Scholar 

  • Haselhorst, M. S., & Buerkle, C. A. (2013). Population genetic structure of Picea engelmannii, P. glauca and their previously unrecognized hybrids in the central Rocky Mountains. Tree Genetics & Genomes, 9(3), 669–681.

    Article  Google Scholar 

  • Hawley, G. J., & DeHayes, D. H. (1985). Hybridization among several North American firs. II. Hybrid verification. Canadian Journal of Forest Research, 15(1), 50–55.

    Article  Google Scholar 

  • Heuertz, M., Teufel, J., González-Martínez, S. C., Soto, A., Fady, B., Alía, R., & Vendramin, G. G. (2010). Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. Journal of Biogeography, 37(3), 541–556.

    Article  Google Scholar 

  • Hyun, S. K. (1977). Interspecific hybridization in pines with the special reference to Pinus rigida x P. taeda. Silvae Genetica, 25, 188–191.

    Google Scholar 

  • Ito, M., Suyama, Y., Ohsawa, T. A., & Watano, Y. (2008). Airborne-pollen pool and mating pattern in a hybrid zone between Pinus pumila and P. parviflora var. pentaphylla. Molecular Ecology, 17(23), 5092–5103.

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo-Correa, J. P., & Bousquet, J. (2003). New evidence from mitochondrial DNA of a progenitor-derivative species relationship between black spruce and red spruce (Pinaceae). American Journal of Botany, 90(12), 1801–1806.

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo-Correa, J. P., & Bousquet, J. (2005). Mitochondrial genome recombination in the zone of contact between two hybridizing conifers. Genetics, 171(4), 1951–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasińska, A. K., Wachowiak, W., Muchewicz, E., Boratyńska, K., Montserrat, J. M., & Boratyński, A. (2010). Cryptic hybrids between Pinus uncinata and P. sylvestris. Botanical Journal of the Linnean Society, 163(4), 473–485.

    Article  Google Scholar 

  • Khasa, P. D., & Dancik, B. P. (1996). Rapid identification of white-Engelmann spruce species by RAPD markers. Theoretical and Applied Genetics, 92(1), 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, T., Tsumura, Y., Kawahara, T., & Okamura, M. (1998). Paternal inheritance of chloroplast and mitochondrial DNA in interspecific hybrids of Chamaecyparis spp. Japanese Journal of Breeding, 48(2), 177–179.

    Article  CAS  Google Scholar 

  • Kormutak, A., Vooková, B., Čamek, V., Salaj, T., Galgóci, M., Maňka, P., Boleček, P., Kuna, R., Kobliha, J., Lukáčik, I., & Gömöry, D. (2013). Artificial hybridization of some Abies species. Plant Systematics and Evolution, 299(6), 1175–1184.

    Article  Google Scholar 

  • Kou, Y. X., Shang, H. Y., Mao, K. S., Li, Z. H., Rushforth, K., & Adams, R. P. (2014). Nuclear and cytoplasmic DNA sequence data further illuminate the genetic composition of Leyland cypresses. Journal of the American Society for Horticultural Science, 139(5), 558–566.

    Article  Google Scholar 

  • Krutovskii, K. V., & Bergmann, F. (1995). Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity, 74(5), 464–480.

    Article  CAS  Google Scholar 

  • Lanner, R. M., & Phillips, A. M., III. (1992). Natural hybridization and introgression of pinyon pines in northwestern Arizona. International Journal of Plant Sciences, 153(2), 250–257.

    Article  Google Scholar 

  • Larsen, C. S. (1956). Genetics in silviculture. Fairlawn, New Jersey: Essential Books.

    Google Scholar 

  • Latta, R. G., & Mitton, J. B. (1999). Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution, 53(3), 769–776.

    Article  PubMed  Google Scholar 

  • Ledig, F. T. (2000). Founder effects and the genetic structure of Coulter pine. Journal of Heredity, 91(4), 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski, A., Nikkanen, T., & Burczyk, J. (1994). Production of hybrid seed in a seed orchard of two larch species, Larix sibirica and Larix decidua. Scandinavian Journal of Forest Research, 9(1–4), 214–217.

    Article  Google Scholar 

  • Lewontin, R. C., & Birch, L. C. (1966). Hybridization as a source of variation for adaptation to new environments. Evolution, 20, 315–336.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Zou, J., Mao, K., Lin, K., Li, H., Liu, J., Källman, T., & Lascoux, M. (2012b). Population genetic evidence for complex evolutionary histories of four high altitude juniper species in the Qinghai–Tibetan Plateau. Evolution, 66(3), 831–845.

    Article  PubMed  Google Scholar 

  • Liston, A., Parker-Defeniks, M., Syring, J. V., Willyard, A., & Cronn, R. (2007). Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: A case study in Pinus lambertiana. Molecular Ecology, 16(18), 3926–3937.

    Article  PubMed  Google Scholar 

  • Little, E. L. (1953). A natural hybrid spruce in Alaska. Journal of Forestry, 51(10), 745–747.

    Google Scholar 

  • Little, D. P. (2004). Documentation of hybridization between Californian cypresses: Cupressus macnabiana × C. sargentii. Systematic Botany, 29(4), 825–833.

    Article  Google Scholar 

  • Liu, Z. L., Cheng, C., & Li, J. (2012). High genetic differentiation in natural populations of Pinus henryi and Pinus tabuliformis as revealed by nuclear microsatellites. Biochemical Systematics and Ecology, 42, 1–9.

    Article  CAS  Google Scholar 

  • Luo, S., Zou, H., & Liang, S. (2000). Study on the introgressive hybridization between Pinus hwangshanensis and P. massoniana. Scientia Silvae Sinicae, 37(6), 118–122.

    Google Scholar 

  • MacDonald, G. M., & Cwynar, L. C. (1985). A fossil pollen based reconstruction of the late Quaternary history of lodgepole pine (Pinus contorta ssp. latifolia) in the western interior of Canada. Canadian Journal of Forest Research, 15(6), pp.1039–1044.

    Google Scholar 

  • Manley, S. A. M. (1972). The occurrence of hybrid swarms of red and black spruces in Central New Brunswick. Canadian Journal of Forest Research, 2(4), 381–391.

    Article  Google Scholar 

  • Meirmans, P. G., Gros-Louis, M. C., Lamothe, M., Perron, M., Bousquet, J., & Isabel, N. (2014). Rates of spontaneous hybridization and hybrid recruitment in co-existing exotic and native mature larch populations. Tree Genetics & Genomes, 10(4), 965–975.

    Article  Google Scholar 

  • Millar, C. I., & Critchfield, W. B. (1988). Crossability and relationships of Pinus muricata (Pinaceae). Madrono, 35(1), 39–53.

    Google Scholar 

  • Mirov, N. T. (1956). Composition of turpentine of lodgepole × jack pine hybrids. Canadian Journal of Botany, 34(4), 443–457.

    Article  CAS  Google Scholar 

  • Moriguchi, Y., Kita, K., Uchiyama, K., Kuromaru, M., & Tsumura, Y. (2008). Enhanced hybridization rates in a Larix gmelinii var. japonica × L. kaempferi interspecific seed orchard with a single maternal clone revealed by cytoplasmic DNA markers. Tree Genetics & Genomes, 4(4), 637–645.

    Article  Google Scholar 

  • Moss, E. H. (1949). Natural pine hybrids in Alberta. Canadian Journal of Research, 27(5), 218–229.

    Article  Google Scholar 

  • Neale, D. B., & Sederoff, R. R. (1988). Inheritance and evolution of conifer organelle genomes. In Genetic manipulation of woody plants (pp. 251–264). Springer US.

    Google Scholar 

  • Niklas, K. J. (1997). The evolutionary biology of plants. University of Chicago Press.

    Google Scholar 

  • Nikles, D. G. (1992, October). Hybrids of forest trees: The bases of hybrid superiority and a discussion of breeding methods. In IUFRO Conference S (Vol. 2, pp. 333–347).

    Google Scholar 

  • Nikles, D. G. (2000). Experience with some Pinus hybrids in Queensland, Australia. In Hybrid breeding and genetics of forest trees. Proc. Queensland Forest Research Institute/Cooperative Research Center – Sustainable Production Forestry Symposium (pp. 27–43). Noosa, Queensland, Australia.

    Google Scholar 

  • Ogilvie, R. T., & Rudloff, E. V. (1968). Chemosystematic studies in the genus Picea (Pinaceae). IV. The introgression of white and Engelmann spruce as found along the Bow River. Canadian Journal of Botany, 46(7), 901–908.

    Article  Google Scholar 

  • Oline, D. K. (2008). Geographic variation in chloroplast haplotypes in the California red fir-noble fir species complex and the status of Shasta red fir. Canadian Journal of Forest Research, 38(10), 2705–2710.

    Article  Google Scholar 

  • Perron, M., & Bousquet, J. (1997). Natural hybridization between black spruce and red spruce. Molecular Ecology, 6(8), 725–734.

    Article  Google Scholar 

  • Pooler, M. R., Riedel, L. G., Bentz, S. E., & Townsend, A. M. (2002). Molecular markers used to verify interspecific hybridization between hemlock (Tsuga) species. Journal of the American Society for Horticultural Science, 127(4), 623–627.

    Article  CAS  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajora, O. P., & Dancik, B. P. (2000). Population genetic variation, structure, and evolution in Engelmann spruce, white spruce, and their natural hybrid complex in Alberta. Canadian Journal of Botany, 78(6), 768–780.

    Article  Google Scholar 

  • Ren, G. P., Abbott, R. J., Zhou, Y. F., Zhang, L. R., Peng, Y. L., & Liu, J. Q. (2012). Genetic divergence, range expansion and possible homoploid hybrid speciation among pine species in Northeast China. Heredity, 108(5), 552–562.

    Article  CAS  PubMed  Google Scholar 

  • Robledo-Arnuncio, J. J., Navascués, M., González-Martínez, S. C., & Gil, L. (2009). Estimating gametic introgression rates in a risk assessment context: A case study with Scots pine relicts. Heredity, 103(5), 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Roche, L. (1969). A genecological study of the genus Picea in British Columbia. New Phytologist, 68, 505–554.

    Article  Google Scholar 

  • Rudolph, T. D., & Yeatman, C. W. (1982). Genetics of jack pine. (WO-38). Washington, DC: U.S. Dept. of Agriculture, Forest Service.

    Google Scholar 

  • Schoenike, R. E., (1976). Geographical variations in jack pine (Pinus banksiana), Univ. Minnesota Agric. Exp. Stn., Tech. Bull, 304, p.47.

    Google Scholar 

  • Semerikova, S. A., Semerikov, V. L., & Lascoux, M. (2011). Post-glacial history and introgression in Abies (Pinaceae) species of the Russian Far East inferred from both nuclear and cytoplasmic markers. Journal of Biogeography, 38(2), 326–340.

    Article  Google Scholar 

  • Senjo, M., Kimura, K., Watano, Y., Ueda, K., & Shimizu, T. (1999). Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). Journal of Plant Research, 112(1), 97–105.

    Article  CAS  Google Scholar 

  • Shepherd, M., Cross, M., Dieters, M. J., & Henry, R. (2002). Branch architecture QTL for Pinus elliottii var. elliottii x Pinus caribaea var. hondurensis hybrids. Annals of Forest Science, 59(5–6), 617–625.

    Article  Google Scholar 

  • Shepherd, M., Huang, S., Eggler, P., Cross, M., Dale, G., Dieters, M., & Henry, R. (2006). Congruence in QTL for adventitious rooting in Pinus elliottii × Pinus caribaea hybrids resolves between and within-species effects. Molecular Breeding, 18(1), 11–28.

    Article  CAS  Google Scholar 

  • Staszkiewicz, J. (1993). Variability of Pinus mugo x P. Sylvestris [Pinaceae] hybrid swarm in the Tisovnica Nature Reserve [Slovakia]. Polish Botanical Studies, (05), 33–41.

    Google Scholar 

  • Stebbins, G. L. (1959). The role of hybridization in evolution. Proceedings of the American Philosophical Society, 103(2), 231–251.

    Google Scholar 

  • Steinhoff, R. J. (1980). Distribution, ecology, silvicultural characteristics, and genetics of the Abies grandis – Abies concolor complex. Washington, DC: FAO.

    Google Scholar 

  • Stewart, J. F., Liu, Y., Tauer, C. G., & Nelson, C. D. (2010). Microsatellite versus AFLP analyses of pre-management introgression levels in loblolly pine (Pinus taeda L.) and shortleaf pine (P. echinata mill.). Tree Genetics & Genomes, 6(6), 853–862.

    Article  Google Scholar 

  • Stewart, J. F., Tauer, C. G., & Nelson, C. D. (2012). Bidirectional introgression between loblolly pine (Pinus taeda L.) and shortleaf pine (P. echinata mill.) has increased since the 1950s. Tree Genetics & Genomes, 8(4), 725–735.

    Article  Google Scholar 

  • Strasburg, J. L., Sherman, N. A., Wright, K. M., Moyle, L. C., Willis, J. H., & Rieseberg, L. H. (2012). What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1587), 364–373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strong, W. L. (2010). Pinus contorta var. yukonensis var. nov. (Pinaceae) from South–Central Yukon, Canada. Nordic Journal of Botany, 28(4), 448–452.

    Google Scholar 

  • Strong, W. L., & Hills, L. V. (2006). Taxonomy and origin of present-day morphometric variation in Picea glauca × P. engelmannii seed-cone scales in North America. Botany, 84(7), 129–1141.

    Google Scholar 

  • Sun, Y., Abbott, R. J., Li, L., Li, L., Zou, J., & Liu, J. (2014). Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai–Tibet Plateau: Homoploid hybrid origin and Pleistocene expansion. Molecular Ecology, 23(2), 343–359.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, B. C. S., Pritchard, S. C., Gawley, J. R., Newton, C. H., & Kiss, G. K. (1994). Analysis of Sitka spruce-interior spruce introgression in British Columbia using cytoplasmic and nuclear DNA probes. Canadian Journal of Forest Research, 24(2), 278–285.

    Article  Google Scholar 

  • Szmidt, A. E., & Wang, X. R. (1993). Molecular systematics and genetic differentiation of Pinus sylvestris (L.) and P. densiflora (Sieb. et Zucc.). Theoretical and Applied Genetics, 86(2–3), 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Szmidt, A. E., El-Kassaby, Y. A., Sigurgeirsson, A., Alden, T., Lindgren, D., & Hällgren, J. E. (1988b). Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of chloroplast DNA. Theoretical and Applied Genetics, 76(6), 841–845.

    Article  CAS  PubMed  Google Scholar 

  • Tauer, C. G., Stewart, J. F., Will, R. E., Lilly, C. J., Guldin, J. M., & Nelson, C. D. (2012). Hybridization leads to loss of genetic integrity in shortleaf pine: Unexpected consequences of pine management and fire suppression. Journal of Forestry, 110(4), 216–224.

    Article  Google Scholar 

  • Terry, R. G. (2010). Re-evaluation of morphological and chloroplast DNA variation in Juniperus osteosperma Hook and Juniperus occidentalis Torr. Little (Cupressaceae) and their putative hybrids. Biochemical Systematics and Ecology, 38(3), 349–360.

    Article  CAS  Google Scholar 

  • Terry, R. G., Nowak, R. S., & Tausch, R. J. (2000). Genetic variation in chloroplast and nuclear ribosomal DNA in Utah juniper (Juniperus osteosperma, Cupressaceae): Evidence for interspecific gene flow. American Journal of Botany, 87(2), 250–258.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui, K., Suwa, A., Sawada, K. I., Kato, T., Ohsawa, T. A., & Watano, Y. (2009). Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae). Journal of Plant Research, 122(5), 509–521.

    Article  CAS  PubMed  Google Scholar 

  • Volkova, P., Shipunov, A., Borisova, P., Moseng, R., & Ivens, R. (2014). In search of hybridity: The case of Karelian spruces. Silva Fennica, 48(2), 1072–1085.

    Article  Google Scholar 

  • Wachowiak, W., Odrzykoski, I., Myczko, Ł., & Prus-Głowacki, W. (2006). Lack of evidence on hybrid swarm in the sympatric population of Pinus mugo and P. sylvestris. Flora-Morphology, Distribution, Functional Ecology of Plants, 201(4), 307–316.

    Article  Google Scholar 

  • Wagner, D. B., Furnier, G. R., Saghai-Maroof, M. A., Williams, S. M., Dancik, B. P., & Allard, R. W. (1987). Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proceedings of the National Academy of Sciences, 84(7), 2097–2100.

    CAS  Google Scholar 

  • Wagner, D. B., Sun, Z. X., Govindaraju, D. R., & Dancik, B. P. (1991b). Spatial patterns of chloroplast DNA and cone morphology variation within populations of a Pinus banksiana – Pinus contorta sympatric region. American Naturalist, 138, 156–170.

    Article  Google Scholar 

  • Wang, X. R., & Szmidt, A. E. (1994). Hybridization and chloroplast DNA variation in a Pinus species complex from Asia. Evolution, 48, 1020–1031.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Mao, J. F., Gao, J. I. E., Zhao, W. E. I., & Wang, X. R. (2011). Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Molecular Ecology, 20(18), 3796–3811.

    Article  PubMed  Google Scholar 

  • Wang, J., Abbott, R. J., Ingvarsson, P. K., & Liu, J. (2014). Increased genetic divergence between two closely related fir species in areas of range overlap. Ecology and Evolution, 4(7), 1019–1029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Lu, J., Yue, W., Li, L., Zou, J., Li, X., He, X., Duan, B., & Liu, J. (2016). Determining the extent and direction of introgression between three spruce species based on molecular markers from three genomes with different rates of gene flow. Plant Systematics and Evolution, 302(6), 691–701.

    Article  CAS  Google Scholar 

  • Watano, Y., Imazu, M., & Shimizu, T. (1995). Chloroplast DNA typing by PCR-SSCP in the Pinus pumila – P. parviflora var. pentaphylla complex (Pinaceae). Journal of Plant Research, 108(4), 493–499.

    Article  CAS  Google Scholar 

  • Watano, Y., Kanai, A., & Tani, N. (2004). Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. American Journal of Botany, 91(1), 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Webby, R. F., Markham, K. R., & Molloy, B. P. (1987). The characterisation of New Zealand Podocarpus hybrids using flavonoid markers. New Zealand Journal of Botany, 25(3), 355–366.

    Article  CAS  Google Scholar 

  • Wheeler, N. C., & Guries, R. P. (1987). A quantitative measure of introgression between lodgepole and jack pines. Canadian Journal of Botany, 65(9), 1876–1885.

    Google Scholar 

  • Wheeler, N. C., Steiner, K. C., Schlarbaum, S. E., & Neale, D. B. (2015). The evolution of forest genetics and tree improvement research in the United States. Journal of Forestry, 113(5), 500–510.

    Google Scholar 

  • Willyard, A., Cronn, R., & Liston, A. (2009). Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution, 52(2), 498–511.

    Article  CAS  PubMed  Google Scholar 

  • Wright, J. W. (1955). Species crossability in spruce in relation to distribution and taxonomy. Forest Science, 1(4), 319–349.

    Google Scholar 

  • Wright, J. W. (1959). Species hybridisation in the White Pines. Forest Science, 5(3), 210–222.

    Google Scholar 

  • Wright, J. W., & Gabriel, W. J. (1958). Species hybridization in the hard pines, series Sylvestres. Silvae Genetica, 7, 109–115.

    Google Scholar 

  • Wu, C. I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14(6), 851–865.

    Article  Google Scholar 

  • Wu, H. X., Ying, C. C., & Muir, J. A. (1996). Effect of geographic variation and jack pine introgression on disease and insect resistance in lodgepole pine. Canadian Journal of Forest Research, 26(5), 711–726.

    Article  Google Scholar 

  • Xing, F., Mao, J. F., Meng, J., Dai, J., Zhao, W., Liu, H., Xing, Z., Zhang, H., Wang, X. R., & Li, Y. (2014). Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution, 4(10), 1890–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, S., Tauer, C. G., & Nelson, C. D. (2008). Natural hybridization within seed sources of shortleaf pine (Pinus echinata mill.) and loblolly pine (Pinus taeda L.). Tree Genetics & Genomes, 4(4), 849–858.

    Article  Google Scholar 

  • Yang, R. C., Ye, Z., & Hiratsuka, Y. (1999). Susceptibility of Pinus contorta - Pinus banksiana complex to Endocronartium harknessii: Host-pathogen interactions. Canadian Journal of Botany, 77(7), 1035–1043.

    Article  Google Scholar 

  • Ye, T. Z., Yang, R. C., & Yeh, F. C. (2002). Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA. Genome, 45(3), 530–540.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, F. C., & Arnott, J. T. (1986). Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Canadian Journal of Forest Research, 16(4), 791–798.

    Article  Google Scholar 

  • Yu, H., Ge, S., & Hong, D. Y. (2000). Allozyme diversity and population genetic structure of Pinus densata Master in northwestern Yunnan, China. Biochemical Genetics, 38(5–6), 138–146.

    Article  Google Scholar 

  • Zhou, Y. F., Abbott, R. J., Jiang, Z. Y., Du, F. K., Milne, R. I., & Liu, J. Q. (2010a). Gene flow and species delimitation: A case study of two pine species with overlapping distributions in Southeast China. Evolution, 64(8), 2342–2352.

    CAS  PubMed  Google Scholar 

  • Zhou, L., Creech, D. L., Krauss, K. W., Yunlong, Y., & Kulhavy, D. L. (2010b). Can we improve the salinity tolerance of genotypes of Taxodium by using varietal and hybrid crosses? Hortscience, 45(12), 1773–1778.

    Article  Google Scholar 

  • Zobel, B. J. (1953). Are there natural loblolly-shortleaf pine hybrids? Journal of Forestry, 51(7), 494–495.

    Google Scholar 

  • Zou, J., Sun, Y., Li, L., Wang, G., Yue, W., Lu, Z., Wang, Q., & Liu, J. (2013). Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Annals of Botany, 112(9), 1829–1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). Hybridization and Introgression. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_15

Download citation

Publish with us

Policies and ethics