Advertisement

Forest Health

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

The conifers, in general, retain a great deal of genetic variation for all manner of traits, from the molecular level to whole-plant phenotypes, and everything in between. It is also true that species vary widely in the amount and distribution of variation they possess for specific traits, and some, like those with very restricted ranges or those that have been forced through genetic bottlenecks, may be severely limited for variation in some or all traits. These conditions apply equally to traits associated with forest health, the consequences of which are becoming increasingly important to the world’s forests, and our reliance on the resources they provide.

References

  1. Abrahamsson, S., Nilsson, J. E., Wu, H., García Gil, M. R., & Andersson, B. (2012). Inheritance of height growth and autumn cold hardiness based on two generations of full-sib and half-sib families of Pinus sylvestris. Scandinavian Journal of Forest Research, 27(5), 405–413.CrossRefGoogle Scholar
  2. Aegerter, B. J., & Gordon, T. R. (2006). Rates of pitch canker induced seedling mortality among Pinus radiata families varying in levels of genetic resistance to Gibberella circinata (anamorph Fusarium circinatum). Forest Ecology and Management, 235(1), 14–17.CrossRefGoogle Scholar
  3. Aitken, S. N., & Adams, W. T. (1997). Spring cold hardiness under strong genetic control in Oregon populations of Pseudotsuga menziesii var. menziesii. Canadian Journal of Forest Research, 27(11), 1773–1780.CrossRefGoogle Scholar
  4. Alfaro, R., John, I., King, N., El-Kassaby, Y. A., Brown, G., & Lewis, K. (2000). Use of artificial infestations in the selection of Sitka spruce genotypes for resistance to the white pine weevil in British Columbia. In R. Alfaro, et al. (Eds.), Protection of World Forests from Insect Pests: Advances in Research. Papers presented at the XXI IUFRO World Congress (7–12 August 2000, Kuala Lumpur, Malaysia), IUFRO World Series Vol. 11.Google Scholar
  5. Alvarez, M. (2007). The state of America’s forests. DIANE Publishing.Google Scholar
  6. Amerson, H. V., Nelson, C. D., Kubisiak, T. L., Kuhlman, E. G., & Garcia, S. A. (2015). Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.). Forests, 6(8), 2739–2761.CrossRefGoogle Scholar
  7. Anekonda, T. S., Adams, W. T., Aitken, S. N., Neale, D. B., Jermstad, K. D., & Wheeler, N. C. (2000). Genetics of cold hardiness in a cloned full-sib family of coastal Douglas-fir. Canadian Journal of Forest Research, 30(5), 837–840.CrossRefGoogle Scholar
  8. Anekonda, T. S., Lomas, M. C., Adams, W. T., Kavanagh, K. L., & Aitken, S. N. (2002). Genetic variation in drought hardiness of coastal Douglas-fir seedlings from British Columbia. Canadian Journal of Forest Research, 32(10), 1701–1716.CrossRefGoogle Scholar
  9. Arregui, A., Espinel, S., Aragones, A., & Sierra, R. (1999). Estimate of genetic parameters in a progeny test of Pinus radiata in the Basque Country. Investigacion Agraria Sistemas y Recursos Forestales, 8(1), 119–128.Google Scholar
  10. Atzmon, N., Moshe, Y., & Schiller, G. (2004). Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecology, 171(1), 15–22.CrossRefGoogle Scholar
  11. Bahnweg, G., Schubert, R., Kehr, R. D., Müller-Starck, G., Heller, W., Langebartels, C., & Sandermann, H., Jr. (2000). Controlled inoculation of Norway spruce (Picea abies) with Sirococcus conigenus: PCR-based quantification of the pathogen in host tissue and infection-related increase of phenolic metabolites. Trees, 14(8), 435–441.CrossRefGoogle Scholar
  12. Bashalkhanov, S., Eckert, A. J., & Rajora, O. P. (2013). Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae). Molecular Ecology, 22(23), 5877–5889.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Beier-Petersen, B., Esbjerg, P., & Soeegaard, B. (1974). The response of Dreyfusia (Adelges) nordmannianae Eckst. (Hom., Adelgidae) and of Oligonychus ununguis Jac. (Acarina, tetranychidae) to individual clones of Abies alba (Mill.) and to light and water. Forest Tree Improvement, Arboretet-Hoersholm, 8, 33–52.Google Scholar
  14. Bigras, F. J., Ryyppö, A., Lindström, A., & Stattin, E. (2001). Cold acclimation and deacclimation of shoots and roots of conifer seedlings. In Conifer cold hardiness (pp. 57–88). Dordrecht: Springer.CrossRefGoogle Scholar
  15. Bingham, R. T. (1983). Blister rust resistant western white pine for the Inland Empire: The story of the first 25 years of the research and development program. USDA Forest Service General Technical Report INT-146.Google Scholar
  16. Bingham, R. T., Olson, R. J., Backer, W. A., & Marsden, M. A. (1969). Breeding blister rust resistant white pine. V. Estimates of heritability, combining ability, and genetic advance based on tester matings. Silvae Genetica, 18, 23–38.Google Scholar
  17. Blada, I. (2000). Genetic variation in blister rust resistance and growth traits in Pinus strobus x P. peuce hybrid at age 17 (experiment 1). Forest Genetics, 7(2), 109–120.Google Scholar
  18. Blodgett, J. T., & Stanosz, G. R. (1997). Differential inhibition of Sphaeropsis sapinea morphotypes by a phenolic compound and several monoterpenes of red pine. Phytopathology, 87(6), 606–609.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Blodgett, J. T., Eyles, A., & Bonello, P. (2007). Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiology, 27(4), 511–517.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bonello, P., Gordon, T. R., & Storer, A. J. (2001). Systemic induced resistance in Monterey pine. Forest Pathology, 31, 99–106.CrossRefGoogle Scholar
  21. Boyer, M. G. (1964). Studies on white pine phenols in relation to blister rust. Canadian Journal of Botany, 42(8), 979–987.CrossRefGoogle Scholar
  22. Boyer, M. G., & Isaac, P. K. (1964). Some observations on white pine blister rust as compared by light and electron microscopy. Canadian Journal of Botany, 42(9), 1305–1309.CrossRefGoogle Scholar
  23. Bridgwater, F. E., Nelson, C. D., Byram, T. D., Kubisiak, T. L., Young, C. H., & Doudrick, R. L. (2003). Development of differential screening panels for slash pine-fusiform rust reaction types. In C. R. McKinley (Ed.), Proceedings 27th Southern Forest Tree Improvement Conference, Stillwater, Oklahoma, USA, June 24–27, 2003, p. 214.Google Scholar
  24. Burdon, R. D. (1998). Multi-site provenance trials of Pinus radiata. Forest Genetic Resources, 26, 3–8.Google Scholar
  25. Burdon, R. D., & Bannister, M. H. (1973). Provenances of Pinus radiata: Their early performance and silvicultural potential. New Zealand Journal of Forestry, 18(2), 217–232.Google Scholar
  26. Burdon, R. D., & Low, C. B. (1991). Performance of Pinus ponderosa and Pinus jeffreyi provenances in New Zealand. Canadian Journal of Forest Research, 21, 1401–1414.CrossRefGoogle Scholar
  27. Burdon, R. D., Currie, D., & Chou, C. K. S. (1982). Responses to inoculation with Diplodia pinea in progenies of apparently resistant trees of Pinus radiata. Australasian Plant Pathology, 11(4), 37–39.CrossRefGoogle Scholar
  28. Burdon, R. D., Firth, A., Low, C. B., & Miller, M. A. (1997). Native provenances of Pinus radiata in New Zealand: Performance and potential. New Zealand Journal of Forestry, 41, 32–36.Google Scholar
  29. Campbell, F. T., & Schlarbaum, S. E. (1994). Fading forests. North American trees and the threat of exotic pests. Natural Resources Defense Council report, 47 pp. Available online at http://treeimprovement.utk.edu/FFI.htm. Last accessed 16 Sept 2014.
  30. Campbell, F. T., & Schlarbaum S. E. (2002). Fading forests II. Trading Away North America’s Natural Heritage? Healing Stones Foundation Publ., 128 pp. Print and Compact Disc. Available online at http://treeimprovement.utk.edu/FFII.htm. Last accessed 16 Sept 2014.
  31. Campbell, F. T., & Schlarbaum S. E. (2014). Fading Forests III. American Forests. What choice will we make? The nature conservancy and the University of Tennessee, 155 pp. Available online at http://treeimprovement.utk.edu/FFII.htm. Last accessed 16 Sept 2014.
  32. Campbell, R. K., & Sugano, A. I. (1979). Genecology of bud-burst phenology in Douglas-fir: Response to flushing temperature and chilling. Botanical Gazette, 140, 223–231.Google Scholar
  33. Cannell, M. G. R., & Sheppard, L. J. (1982). Seasonal changes in the frost hardiness of provenances of Picea sitchensis in Scotland. Forestry, 55(2), 137–153.CrossRefGoogle Scholar
  34. Carson, S. D. (1990). A breed of radiata pine resistant to Dothistroma needle blight - methods used for development and expected gains. Phytopathology, 80, 1007. (abstr).Google Scholar
  35. Carson, S. D., & Carson, M. J. (1991). Realising gains in resistance to Dothistroma. In C. Dean & C. Hanel. Proceedings of the 11th Research Working Group 1 (Forest Genetics), Australian Forestry Council, 11–15 March, 1991, Coonawarra, South Australia, pp. 71–75.Google Scholar
  36. Chiba, S. (1963). Studies on the breeding of Larix species 1. Variation between species on the gnawing by the mountain hares and the wild mice. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd., No. 29, Reprinted from Trans. Mtg. Hokkaido Br. Jpn. For. Soc. 12th 1963.Google Scholar
  37. Chiba, S., & Nagata, Y. (1963). Studies on the breeding of Larix species 2. Variation between species in susceptibility by Mycosphaerella larici-leptolepis and Pysalospora laricina. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd., No. 30, Reprinted from Trans. Mtg. Hokkaido Br. Jpn. For. Soc. 12th 1963.Google Scholar
  38. Chiba, S., & Nagata, Y. (1972). Studies on the breeding of Larix species 4. Selection of resistant trees for needle cast and shoot blight in Japanese larch, and observation on its growth. Technical note, Institute for Forest Tree Improvement, Oji Paper Co. Ltd., No. 116, Reprinted from Forest Tree Breeding of Hokkaido 15(1) 1972.Google Scholar
  39. Chiba, S., & Nagata, Y. (1978). Clonal testing of selected trees, resistant for needle cast and shoot blight in Larix species. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd. No. 174, Reprinted from Forest Tree Breeding of Hokkaido 21 1978.Google Scholar
  40. Chiba, S., Nagata, Y., & Tomaki, K. (1982). Variation of vole resistance in Larix leptolepis, and comparison with the hybrid of L. gmelini and L. leptolepis. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd., No. 209, Reprinted from Forest Tree Breeding of Hokkaido 25(2) 1982.Google Scholar
  41. Chiba, S., Nagata, Y., & Tomaki, K. (1989). Palatability test of vole from several localities using same clonal materials in Larix species. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd., No. 268, Reprinted from Forest Tree Breeding of Hokkaido 32(2) 1989.Google Scholar
  42. Cobb, F. W., & Libby, W. J. (1968). Susceptibility of Monterey, Guadalupe Island, Cedros Island, and bishop pines to Scirrhia (Dothistroma) pini, the cause of red band needle blight. Phytophathology, 58(1), 88–90.Google Scholar
  43. Cregg, B. M. (1994). Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiology, 14(7), 883–898.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Cruickshank, M. G., Lejour, D., & Morrison, D. J. (2006). Traumatic resin canals as markers of infection events in Douglas-fir roots infected with Armillaria root disease. Forest Pathology, 36(5), 372–384.CrossRefGoogle Scholar
  45. Cubbage, F. W., Pye, J. M., Holmes, T. P., & Wagner, J. E. (2000). An economic evaluation of fusiform rust research. Southern Journal of Applied Forestry, 24, 77–85.Google Scholar
  46. Darychuk, N., Hawkins, B. J., & Stoehr, M. (2012). Trade-offs between growth and cold and drought hardiness in submaritime Douglas-fir. Canadian Journal of Forest Research, 42(8), 1530–1541.CrossRefGoogle Scholar
  47. Dauwe, R., Holliday, J. A., Aitken, S. N., & Mansfield, S. D. (2012). Metabolic dynamics during autumn cold acclimation within and among populations of Sitka spruce (Picea sitchensis). New Phytologist, 194(1), 192–205.PubMedCrossRefPubMedCentralGoogle Scholar
  48. De Diego, N., Pérez-Alfocea, F., Cantero, E., Lacuesta, M., & Moncaleán, P. (2012). Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiology, 32(4), 435–449.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Devey, M. E., Delfino-Mix, A., Kinloch, B. B., Jr., & Neale, D. B. (1995). Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proceedings of the National Academy of Sciences of the United States of America, 92(6), 2066–2070.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Devey, M. E., Matheson, A. C., & Carson, M. (2001). An international project to study pitch canker in radiata pine. New Zealand Journal of Forestry, 46(2), 38–41.Google Scholar
  51. Devey, M. E., Groom, K. A., Nolan, M. F., Bell, J. C., Dudzinski, M. J., Old, K. M., et al. (2004b). Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theoretical and Applied Genetics, 108(6), 1056–1063.PubMedPubMedCentralGoogle Scholar
  52. Donoso, A., Rodriguez, V., Carrasco, A., Ahumada, R., Sanfuentes, E., & Valenzuela, S. (2015). Relative expression of seven candidate genes for pathogen resistance on Pinus radiata infected with Fusarium circinatum. Physiological and Molecular Plant Pathology, 92, 42–50.CrossRefGoogle Scholar
  53. Dungey, H. S., Low, C. B., Lee, J., Millier, M. A., Fleet, K., & Yanchuk, A. (2012). Developing breeding and deployment options for Douglas fir in New Zealand: Breeding and future forest conditions. Silvae Genetica, 61, 104–115.CrossRefGoogle Scholar
  54. Dvorak, W. S., Hodge, G. R., & Kietzka, J. E. (2007). Genetic variation in survival, growth, and stem form of Pinus leiophylla in Brazil and South Africa and provenance resistance to pitch canker. Southern Hemisphere Forestry Journal, 69(3), 125–135.Google Scholar
  55. Eckert, A. J., Wegrzyn, J. L., Pande, B., Jermstad, K. D., Lee, J. M., Liechty, J. D., et al. (2009b). Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics, 183(1), 289–298.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Eckert, A. J., van Heerwaarden, J., Wegrzyn, J. L., Nelson, C. D., Ross-Ibarra, J., González-Martínez, S. C., & Neale, D. B. (2010b). Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics, 185(3), 969–982.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Edwards, S., Jesson, L. K., Quiring, D., Weng, Y., Johns, R., & Park, Y. S. (2016). Genetically-based resistance of balsam fir (Pinaceae) to damage from the balsam twig aphid (Hemiptera: Aphididae). The Canadian Entomologist, 148(04), 426–433.CrossRefGoogle Scholar
  58. Ekramoddoullah, A. K. M., Yu, X., Sturrock, R., Zamani, A., & Taylor, D. (2000). Detection and seasonal expression pattern of a pathogenesis-related protein (PR-10) in Douglas-fir (Pseudotsuga menziesii) tissues. Physiologia Plantarum, 110(2), 240–247.CrossRefGoogle Scholar
  59. Ekramoddoullah, A. K. M., Liu, J. J., & Zamani, A. (2006). Cloning and characterization of a putative antifungal peptide gene (Pm-AMP1) in Pinus monticola. Phytopathology, 96(2), 164–170.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Elvira-Recuenco, M., Iturritxa, E., Majada, J., Alia, R., & Raposo, R. (2014). Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum. PLoS One, 9(12), e114971.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ersoz, E. S., Wright, M. H., González-Martínez, S. C., Langley, C. H., & Neale, D. B. (2010). Evolution of disease response genes in loblolly pine: Insights from candidate genes. PLoS One, 5(12), e14234.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Eveno, E., Collada, C., Guevara, M. A., Léger, V., Soto, A., Díaz, L., Léger, P., González-Martínez, S. C., Cervera, M. T., Plomion, C., & Garnier-Géré, P. H. (2008). Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Molecular Biology and Evolution, 25(2), 417–437.PubMedCrossRefGoogle Scholar
  63. FAO. (2009). Global review of forest pests and diseases. FAO forestry paper No. 156. Rome, Italy.Google Scholar
  64. Fins, L., Byler, J., Ferguson, D., Harvey, A., Mahalovich, M. F., McDonald, G., Miller, D., Schwandt, J., & Zack, A. (2002). Return of the giants: Restoring western white pine to the inland northwest. Journal of Forestry, 100(4), 20–26.Google Scholar
  65. Frampton, J., & Benson, D. M. (2004). Phytophthora root rot mortality in Fraser fir seedlings. Hortscience, 39(5), 1025–1026.CrossRefGoogle Scholar
  66. Franceschi, V. R., Krokene, P., Christiansen, E., & Krekling, T. (2005). Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167(2), 353–376.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Franich, R. A., Wells, L. G., & Barnett, J. R. (1977). Variation with tree age of needle cuticle topography and stomatal structure in Pinus radiata D Don. Annals of Botany, 41, 621–626.CrossRefGoogle Scholar
  68. Franich, R. A., Gadgil, P. D., & Shain, L. (1983). Fungistaxic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiological Plant Pathology, 23(2), 183–195.CrossRefGoogle Scholar
  69. Franich, R. A., Carson, M. J., & Carson, S. D. (1986). Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by dothistromin, and correlation with resistance of P. radiata families to Dothistroma pini. Physiological and Molecular Plant Pathology, 28(2), 267–286.CrossRefGoogle Scholar
  70. Fraser, S., Martín-García, J., Perry, A., Kabir, M. S., Owen, T., Solla, A., Brown, A. V., Bulman, L. S., Barnes, I., Hale, M. D., & Vasconcelos, M. W. (2015). A review of Pinaceae resistance mechanisms against needle and shoot pathogens with a focus on the Dothistroma–Pinus interaction. Forest Pathology, 19.Google Scholar
  71. Fujimoto, Y., Maeta, T., & Tajima, M. (1983). Studies on resistant tree breeding to sugi bark midges (Resseliella odai Inouye). Bulletin of the Forest Tree Breeding Institute, 1, 109–123.Google Scholar
  72. Gea, L. D., & Low, C. B. (1997). Genetic parameters and growth, form and canker resistance of Cupressus macrocarpa in New Zealand. New Zealand Journal of Forest Science, 27, 245–254.Google Scholar
  73. Goddard, R. E., McDonald, G. I., & Steinhoff, R. J. (1985). Measurement of field resistance, rust hazard, and deployment of blister rust-resistant western white pine. USDA Forest Service Res. Pap. INT-358.Google Scholar
  74. Gömöry, D., Foffová, E., Kmeť, J., Longauer, R., & Romšáková, I. (2010). Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation. Acta Biologica Cracoviensia Series Botanica, 52(2), 42–49.Google Scholar
  75. González-Martínez, S. C., Ersoz, E., Brown, G. R., Wheeler, N. C., & Neale, D. B. (2006a). DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics, 172(3), 1915–1926.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gordon, T. R., Wikler, K. R., Clark, S. L., Okamoto, D., Storer, A. J., & Bonello, P. (1998). Resistance to pitch canker disease, caused by Fusarium subglutinans f. sp. pini, in Monterey pine (Pinus radiata). Plant Pathology, 47(6), 706–711.Google Scholar
  77. Grace, L. J., Charity, J. A., Gresham, B., Kay, N., & Walter, C. (2005). Insect-resistant transgenic Pinus radiata. Plant Cell Reports.Google Scholar
  78. Gray, D. J., & Amerson, H. V. (1983). In vitro resistance of embryos of Pinus taeda to Cronartium quercuum f. sp. fusiforme: Ultrastructure and histology. Phytopathology, 73(11), 1492–1499.CrossRefGoogle Scholar
  79. Gwaze, D. P., Lott, L. H., & Nelson, D. C. (2003b). The efficacy of breeding for brown spot disease resistance in longleaf pine. In C. R. McKinley (Ed.), Proceedings 27th Southern Forest Tree Improvement Conference (pp. 63–71), Stillwater, Oklahoma, USA, June 24–27, 2003.Google Scholar
  80. Hänninen, H., Beuker, E., Johnsen, Ø., Leinonen, I., Murray, M., Sheppard, L., & Skrøppa, T. (2001). Impacts of climate change on cold hardiness of conifers. In Conifer cold hardiness (pp. 305–333). Dordrecht: Springer.CrossRefGoogle Scholar
  81. Hansen, E. M., Reeser, P., Sutton, W., & Sniezko, R. A. (2012). Methods for screening Port-Orford-cedar for resistance to Phytophthora lateralis. In Proceedings of the 4th International Workshop on Genetics of Host-Parasite Interactions in Forestry, Eugene, Oregon. KM Palmieri, tech. coord. Gen. Tech. Rep. PSW-GTR-240. US Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA (pp. 181–188).Google Scholar
  82. Harding, S., Rouland, H., & Wellendorf, H. (2003). Consistency of resistance by the spruce green aphid in different ontogenetic stages of Sitka spruce. Agricultural and Forest Entomology., 5(2), 107.CrossRefGoogle Scholar
  83. Harju, A. M., Venälainen, M., Beuker, E., Velling, P., & Viitanen, H. (2001). Genetic variation in the decay resistance of Scots pine wood against brown rot fungus. Canadian Journal of Forest Research, 31(7), 1244–1249.CrossRefGoogle Scholar
  84. Harkins, D. M., Johnson, G. N., Skaggs, P. A., Mix, A. D., Dupper, G. E., Devey, M. E., Kinloch, B. B., Jr., & Neale, D. B. (1998). Saturation mapping of a major gene for resistance to white pine blister rust in sugar pine. Theoretical and Applied Genetics, 97, 1355–1360.CrossRefGoogle Scholar
  85. Hawkins, B. J., & Stoehr, M. (2009). Growth, phenology, and cold hardiness of 32 Douglas-fir full-sib families. Canadian Journal of Forest Research, 39(10), 1821–1834.CrossRefGoogle Scholar
  86. Hayashi, E., Kondo, T., Terada, K., Kuramoto, N., & Kawasaki, S. (2004). Identification of AFLP markers linked to a resistance gene against pine needle gall midge in Japanese black pine. Theoretical and Applied Genetics, 108(6), 1177–1181.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Hayden, K. J., Nettel, A., Dodd, R. S., & Garbelotto, M. (2011). Will all the trees fall? Variable resistance to an introduced forest disease in a highly susceptible host. Forest Ecology and Management, 261, 1781–1791.CrossRefGoogle Scholar
  88. Hietala, A. M., Eikenes, M., Kvaalen, H., Solheim, H., & Fossdal, C. G. (2003). Multiplex real-time PCR for monitoring Heterobasidion annosum colonization in Norway spruce clones that differ in disease resistance. Applied and Environmental Microbiology, 69(8), 4413–4420.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Highsmith, M. T., Lott, L. H., Gwaze, D. P. Lominy, D., & Nelson, C. D. (2003). Evaluation of the inheritance of tip moth susceptibility using pine hybrids planted in Southeast Mississippi. In C. R. McKinley (Ed.), Proceedings 27th Southern Forest Tree Improvement Conference, Stillwater, Oklahoma, USA, June 24–27, 2003.Google Scholar
  90. Hodge, G. R., & Dvorak, W. S. (2000). Differential responses of Central American and Mexican pine species and Pinus radiata to infection by the pitch canker fungus. New Forests, 19(3), 241–258.CrossRefGoogle Scholar
  91. Hodge, G. R., Dvorak, W. S., & Tighe, M. E. (2012). Comparisons between laboratory and field results of frost tolerance of pines from the southern USA and Mesoamerica planted as exotics. Southern Forests: Journal of Forest Science, 74(1), 7–17.CrossRefGoogle Scholar
  92. Hoff, R. J. (1986). Inheritance of the bark reaction resistance mechanism in Pinus monticola infected by Cronartium ribicola. USDA For. Serv. Res. Note INT-361.Google Scholar
  93. Hoff, R. J. (1987). Susceptibility of Inland Douglas-fir to Rhabdocline needle cast. USDA Forest Service, Res. Note INT-375.Google Scholar
  94. Hoff, R. J. (1988a). Resistance of ponderosa pine to the gouty pitch midge (Cecidomyia piniinopis). Forest Service. Res. Paper INT-387.Google Scholar
  95. Hoff, R. J. (1988b). Susceptibility of Ponderosa pine to the needle cast fungus Loplzodermium baculiferrim. USDA Forest Service. Res. Paper INT-386. 6p.Google Scholar
  96. Hoff, R. J. (1989). Differential susceptibility of ponderosa pine to the gouty pitch midge (Cecidomyia piniillopis). USDA Forest Service. Res. Paper INT-q99.Google Scholar
  97. Hoff, R. J., & McDonald, G. I. (1971). Resistance of Pinus monticola to Cronartium ribicola: Short shoot fungicidal reaction. Canadian Journal of Botany, 49, 1235–1239.CrossRefGoogle Scholar
  98. Hoff, R. J., & McDonald, G. I. (1975). Hypersensitive reaction in Pinus armandii caused by Cronartium ribicola. Canadian Journal of Forest Research, 5(1), 146–148.CrossRefGoogle Scholar
  99. Hoff, R. J., & McDonald, G. I. (1978). Genetic variation in susceptibility of western white pine to needle blight. USDA Forest Service Res. Not INT-249.Google Scholar
  100. Hoff, R. J., & McDonald, G. I. (1993). Variation of virulence of white pine blister rust. European Journal of Forest Pathology, 23, 103–109.CrossRefGoogle Scholar
  101. Hoff, R. J., & McDonald, G. I. (1994). Disease and insect resistance in conifers associated with the cedar/hemlock ecosystem. In D. M. Baumgartner, J. E. Lotan, & J. R. Tonn (Eds.), Interior cedar-hemlock-white pine forests: Ecology and management (pp. 151–155). March 24, 1994, Spokane, WA.Google Scholar
  102. Holliday, J. A., Ralph, S. G., White, R., Bohlmann, J., & Aitken, S. N. (2008). Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytologist, 178(1), 103–122.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Hotter, G. S. (1997). Elicitor-induced oxidative burst and phenylpropanoid metabolism in Pinus radiata cell suspension cultures. Functional Plant Biology, 24(6), 797–804.CrossRefGoogle Scholar
  104. Howe, G. T., Aitken, S. N., Neale, D. B., Jermstad, K. D., Wheeler, N. C., & Chen, T. H. H. (2003). From genotype to phenotype: Unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany, 81, 1247–1266.CrossRefGoogle Scholar
  105. Huber, D., & Amerson, H. (2011). Performance of the loblolly pine fusiform rust disease resistance gene (Fr1) in a slash X loblolly pine hybrid family. Tree Genetics & Genomes, 7(3), 535–540.CrossRefGoogle Scholar
  106. Hudgins, J. W., Christiansen, E., & Franceschi, V. R. (2004). Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: A phylogenetic perspective. Tree Physiology, 24(3), 251–264.PubMedCrossRefGoogle Scholar
  107. Hunt, R. S. (1981). Pine needle casts and blights in the Pacific Region. Can. For. Serv. Pac. For. Res. Cent., For. Pest Leaf. No. 43.Google Scholar
  108. Hunt, R. S. (2004). Blister-rust-resistant western white pines for British Columbia, Information report BC-X-397. Victoria: Natural Resources Canada.Google Scholar
  109. Hunt, R. S., & Jensen, G. D. (2001). Frequency of resistant western white pine seedlings from parents of different phenotypes. Western Journal of Applied Forestry, 16(4), 149–152.Google Scholar
  110. Hunt, R. S., Ying, C. C., & Ashbee, D. (1987). Variation in damage among Pinus contorta provenances caused by the needle cast fungus Lophoderrnelia concolor. Canadian Journal of Forest Research, 17, 359.CrossRefGoogle Scholar
  111. Hurme, P., Repo, T., Savolainen, O., & Pääkkönen, T. (1997). Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Canadian Journal of Forest Research, 27(5), 716–723.CrossRefGoogle Scholar
  112. Isik, F., Li, B., & Frampton, J. (2003). Estimates of addditive, dominance and epistatic genetic variances from a replicated test of loblolly pine. Forest Science, 49(1), 77–88.Google Scholar
  113. Isik, F., Amerson, H. V., Whetten, R. W., Garcia, S. A., & McKeand, S. E. (2012). Interactions of Fr genes and mixed-pathogen inocula in the loblolly pine-fusiform rust pathosystem. Tree Genetics & Genomes, 8(1), 15–25.CrossRefGoogle Scholar
  114. Jacobs, J. J., Burnes, T. A., David, A. J., & Blanchette, R. A. (2009). Histopathology of primary needles and mortality associated with white pine blister rust in resistant and susceptible Pinus strobus. Forest Pathology, 39(6), 361–376.CrossRefGoogle Scholar
  115. Jermstad, K. D., Bassoni, D. L., Jech, K. S., Wheeler, N. C., & Neale, D. B. (2001a). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir I. Timing of vegetative bud flush. Theoretical and Applied Genetics, 102(8), 1142–1151.Google Scholar
  116. Jermstad, K. D., Bassoni, D. L., Wheeler, N. C., Anekonda, T. S., Aitken, S. N., Adams, W. T., & Neale, D. B. (2001b). Main content area mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir II. Spring and fall cold-hardiness. Theoretical and Applied Genetics, 102(8), 1152–1158.Google Scholar
  117. Jermstad, K. D., Bassoni, D. L., Jech, K. S., Ritchie, G. A., Wheeler, N. C., & Neale, D. B. (2003). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir III. Quantitative trait loci-by-environment interactions. Genetics, 165(3), 1489–1506.PubMedPubMedCentralGoogle Scholar
  118. Jewell, F. F. (1990). Histopathology of longleaf pine needles infected by Ploioderma hedgcockii (Dearn.) Darker. Forest Pathology, 20(1), 24–31.CrossRefGoogle Scholar
  119. Johnson, G. R. (2002). Genetic variation in tolerance of Douglas-fir to Swiss needle cast as assessed by symptom expression. Silvae Genetica, 51(2–3), 80–88.Google Scholar
  120. Jones, G. E., & Cregg, B. M. (2006). Screening exotic firs for the midwestern United States: Interspecific variation in adaptive traits. Hortscience, 41(2), 323–328.CrossRefGoogle Scholar
  121. Jorge, V., Dowkiw, A., Bankhead, S., & F-X. Saintonge. (2015). https://colloque.inra.fr/tree-parasite-interactions2015/Abstracts.
  122. Juang, Y., Jin, N., Diner, A., Tauer, C., Zhang, Y., & Damicone, J. (2003). Genetic analysis of a disease resistance gene from loblolly pine. In C. R. McKinley (Ed.), Proceedings 27th Southern Forest Tree Improvement Conference (p. 214), Stillwater, Oklahoma, USA, June 24–27, 2003.Google Scholar
  123. Jurgens, J. A., Blanchette, R. A., Zambino, P. J., & David, A. (2003). Histology of white pine blister rust in needles of resistant and susceptible eastern white pine. Plant Disease, 87(9), 1026–1030.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Kamunya, S. M., Olng'otie, P. S., Chagala, E., Day, R. K., & Kipkore, W. K. (1999). Genetic variation and heritability of resistance to Cinara cupressi in Cupressus lusitanica. Journal of Tropical Forest Science, 11(3), 587–598.Google Scholar
  125. Kandemir, G. E., Kaya, Z., Temel, F., & Önde, S. (2010). Genetic variation in cold hardiness and phenology between and within Turkish red pine (Pinus brutia Ten.) populations: Implications for seed transfer. Silvae Genet, 59, 49–57.CrossRefGoogle Scholar
  126. Karlsson, B., & Swedjemark, G. (2006). Genotypic variation in natural infection of Heterobasidion spp. in a Picea abies clone trial in southern Sweden. Scandinavian Journal of Forest Research, 21, 108–114.CrossRefGoogle Scholar
  127. Kato, K. (1996). Comparison of resistance in elite hinoki trees (Chamaecyparis obtusa (Sieb. et Zucc.) Endl) to Seiridium unicorne (Cooke et Ellis) Sutto. Bulletin of the National Forest Tree Breeding Center, 14, 145–157.Google Scholar
  128. Kato, K., & Kawamura, K. (1993). Clonal variation in Sugi [Cryptomeria japonica] on the resistance to cryptomeria bark borer (Semanotus Japonicus Lacordaire) and the population dynamics by setting the bark borer free in a cage. Bulletin of the National Forest Tree Breeding Center, 11, 1–15.Google Scholar
  129. Kato, K., & Taniguchi, T. (2003). Ten years examination in the primary screening test in a project for selecting Japanese cedar resistant to Semanotus japonicus (Coleoptera: Cerambycidae) conducted in Kanto Breeding Region. Bulletin of the National Forest Tree Breeding Center, 19, 13–24.Google Scholar
  130. Kavanagh, K. L., Bond, B. J., Aitken, S. N., Gartner, B. L., & Knowe, S. (1999). Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiology, 19(1), 31–37.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Kayihan, G. C., Huber, D. A., Morse, A. M., White, T. L., & Davis, J. M. (2005). Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theoretical and Applied Genetics, 110(5), 948–958.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Keeling, C. I., & Bohlmann, J. (2006b). Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. The New Phytologist, 170, 657–675.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Kegley, S., Stipe, L., & Hepner, C. (1994). Tip moth control at the Lenore Tree Improvement Area 1993. USDA Forest Service, Northern Region, FPM Report 94-4 (3450), p. 7.Google Scholar
  134. Kim, C.S., Hong, S.H., Ryu, J.B., Choi, C., & Kim, J.S. (1978). Breeding of varieties of pines resistant to pine gall midge (Thecodiplosis japonensis Uchida et Inouye). 2. Seasonal variation of needle monoterpene composition in resistant Pinus thunbergii. In Third World Consultation on Forest Tree Breeding, Canberra (Australia), 21 Mar 1977, Session 4 – Constraints on progress (pp. 948–958).Google Scholar
  135. Kimberley, M. O., & Hood, I. A. (2005). Douglas-fir provenance susceptibility to Swiss needle cast in New Zealand. Australasian Plant Pathology, 34(1), 57–62.CrossRefGoogle Scholar
  136. King, J. N., & Alfaro, R. I. (2004). Breeding for resistance to a shoot weevil of Sitka spruce in British Columbia, Canada. In C. Walter & M. Carson (Eds.). Proc. of Conference Plantation forest biotechnology for the 21st century.Google Scholar
  137. King, J. N., Yanchuk, A. D., Kiss, G. K., & Alfaro, R. I. (1997). Genetic and phenotypic relationships between weevil (Pissodes strobi) resistance and height growth in spruce populations of British Columbia. Canadian Journal of Forest Research, 27, 732–739.CrossRefGoogle Scholar
  138. King, J. N., Alfaro, R. I., Ott, P., & van Akker L. (2012). Phenotypic evidence suggests a possible major-gene element to weevil resistance in Sitka spruce. In Proc. Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees. United States Department of Agriculture, Forest Service Gen. Tech. Rep. PSW-GTR-240.Google Scholar
  139. Kinloch, B. B., Jr. (1982). Resistance to white pine blister rust in sugar pine: Research at the Pacific Southwest Forest and Range Experiment Station. In Breeding insect and disease resistant forest trees workshop, 19–23 July 1982, Eugene, Ore (pp. 86–91).Google Scholar
  140. Kinloch, B. B., Jr. (2003). White pine blister rust in North America: Past and prognosis. Phytopathology, 93, 1044–1047.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Kinloch, B. B., Jr., & Dupper, G. E. (2002). Genetic specificity in the white pine-blister rust pathosystem. Phytopathology, 92(3), 278–280.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Kinloch, B. B., Jr., & Littlefield, J. L. (1977). White pine blister rust: Hypersensitive resistance in sugar pine. Canadian Journal of Botany, 55(9), 1148–1155.CrossRefGoogle Scholar
  143. Kinloch, B. B., Jr., Parks, G. K., & Fowler, C. W. (1970). White pine blister rust: Simply inherited resistance in sugar pine. Science, 193–195.Google Scholar
  144. Kinloch, B. B., Jr., Sniezko, R. A., Barnes, G. D., & Greathouse, T. E. (1999). A major gene for resistance to white pine blister rust in western white pine from the western Cascade Range. Phytopathology, 89, 861–867.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Kinloch, B. B., Jr., Davis, D. A., & Burton, D. C. (2004). Resistance and virulence interactions between two white pine species and blister rust in a 30-year field trial. In B. Li, & S. McKeand (Eds.), Forest genetics and tree breeding in the age of genomics: Progress and future, Proceedings of 2004 IUFRO Joint Conference of Division 2, 1–5 November 2004. Charleston, S.C.Google Scholar
  146. Kitzmiller, J. H. (1976). Tree improvement master plan for the California region. USDA For. Serv. Region 5. Appendix C: Breeding for white pine blister rust resistance in sugar pine: An operational plan for Region 5. pp. 97–123.Google Scholar
  147. Kleinhentz, M., Raffin, A., & Jactel, H. (1998). Genetic parameters and gain expected from direct selection for resistance to Dioryctria sylvestrella Ratz. (Lepidoptera: Pyralidae) in Pinus pinaster Ait., using a full diallel mating design. Forest Genetics, 5(3), 147–154.Google Scholar
  148. Kobayashi, T., & Muramoto, M. (1989). Pitch canker of Pinus luchuensis, a new disease of Japanese forests. Forest Pests, 40, 169–173.Google Scholar
  149. Kohda, H., Chiba, S., & Nagata, Y. (1981). Studies on the breeding of Larix species 9. Resistance of selected trees to Needle cast disease and genetic analysis by crossed families of Japanese larch. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd., No. 196, Reprinted from Trans. Mtg. Hokkaido Br. Jpn. For. Soc. No. 30.Google Scholar
  150. Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Mathiasen, R., Stewart, J. E., & Weed, A. S. (2016). Observed and anticipated impacts of drought on forest insects and diseases in the United States. Forest Ecology and Management, 380, 321–334.CrossRefGoogle Scholar
  151. Kondo, T., Terada, K., Hayashi, E., Kuramoto, N., Okamura, M., & Kawasaki, H. (2000). RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii). Theoretical and Applied Genetics, 100(3–4), 391–395.CrossRefGoogle Scholar
  152. Kraus, J. F. (1986). Breeding shortleaf X loblolly pine hybrids for the development of fusiform rust resistant loblolly pine. Southern Journal of Applied Forestry, 10, 195–197.Google Scholar
  153. Kreyling, J., Wiesenberg, G. L., Thiel, D., Wohlfart, C., Huber, G., Walter, J., Jentsch, A., Konnert, M., & Beierkuhnlein, C. (2012). Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environmental and Experimental Botany, 78, 99–108.CrossRefGoogle Scholar
  154. Krokene, P. (2015). Conifer defense and resistance to bark beetles. In Bark beetles: Biology and ecology of native and invasive species (pp. 177–207). ScienceDirect.Google Scholar
  155. Kuhlman, E. G. (1997). Inoculum density and expression of major gene resistance to fusiform rust disease in loblolly pine. Plant Disease, 81, 597–600.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Lachance, D., Hamel, L. P., Pelletier, F., Valéro, J., Bernier-Cardou, M., Chapman, K., Van Frankenhuyzen, K., & Séguin, A. (2007). Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genetics & Genomes, 3(2), 153–167.CrossRefGoogle Scholar
  157. Laflamme, G., Rioux, D., Simard, M., Bussières, G., & Mallett, K. (2006). Resistance of Pinus contorta to the European race of Gremmeniella abietina. Forest Pathology, 36, 8396.CrossRefGoogle Scholar
  158. Lambeth, C. (2000). Realized genetic gains for first generation improved loblolly pine in 45 tests in coastal North Carolina. Southern Journal of Applied Forestry, 24(3), 140–144.Google Scholar
  159. Lamy, J.-B., Delzon, S., Bouche, P. S., Alia, R., Vendramin, G. G., Cochard, H., & Plomion, C. (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist, 201, 874–886.PubMedPubMedCentralGoogle Scholar
  160. Larochelle, F., Lavallée, R., Plourde, A., Daoust, G., & Bauce, E. (1993). Sélection d'épinettes de Norvège résistantes au charançon du pin blanc (résumé) Page 285 (Vol. 61) dans Association canadienne-française pour l'avancement des sciences (ACFAS), Compte rendu : 61e congrès de l'ACFAS. May 17–21, 1993, Université du Québec à Rimouski, Rimouski (Québec). ACFAS, Montréal (Québec).Google Scholar
  161. Lesney, M. S. (1989). Growth responses and lignin production in cell suspensions of Pinus elliottii ‘elicited’ by chitin, chitosan or mycelium of Cronartium quercum f. sp. fusiforme. Plant Cell, Tissue and Organ Culture, 19(1), 23–31.CrossRefGoogle Scholar
  162. Lieutier, F. (2007). Host resistance to bark beetles and its variations. In Bark and wood boring insects in living trees in Europe, a synthesis (pp. 135–180). Dordrecht: Springer.Google Scholar
  163. Liu, J. J., & Ekramoddoullah, A. K. (2011). Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). Planta, 233(5), 1041–1053.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Liu, J. J., Ekramoddoullah, A. K., & Yu, X. (2003b). Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiologia Plantarum, 119(4), 544–553.CrossRefGoogle Scholar
  165. Liu, J. J., Ekramoddoullah, A. K., & Zamani, A. (2005). A class IV chitinase is up-regulated by fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in western white pine (Pinus monticola). Phytopathology, 95(3), 284–291.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Liu, J. J., Zamani, A., & Ekramoddoullah, A. K. (2010a). Expression profiling of a complex thaumatin-like protein family in western white pine. Planta, 231(3), 637–651.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Liu, X. Z., Liu, Z., Yang, Y. M., & Zhang, H. Y. (2010b). Production of transgenic Pinus armandii plants harbouring btCryIII (A) gene. Biologia Plantarum, 54(4), 711–714.CrossRefGoogle Scholar
  168. Liu, J. J., Sniezko, R. A., & Ekramoddoullah, A. K. (2011b). Association of a novel Pinus monticola chitinase gene (PmCh4B) with quantitative resistance to Cronartium ribicola. Phytopathology, 101(8), 904–911.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Liu, J. J., Hammett, C., & Sniezko, R. A. (2013b). Pinus monticola pathogenesis-related gene PmPR10-2 alleles as defense candidates for stem quantitative disease resistance against white pine blister rust (Cronartium ribicola). Tree Genetics & Genomes, 9(2), 397–408.CrossRefGoogle Scholar
  170. Liu, J. J., Zamany, A., & Sniezko, R. A. (2013c). Anti-microbial peptide (AMP): Nucleotide variation, gene expression, and host resistance in the white pine blister rust (WPBR) pathosystem. Planta, 237(1), 43–54.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Liu, J. J., Schoettle, A., Sniezko, R., Sturrock, R., Zamany, A., Williams, H., Ha, A., Chan, D., Danchok, B., Savin, D., & Kegley, A. (2016b). Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome-based SNP genotyping. BMC Genomics, 17, 753.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Liu, J. J., Sniezko, R. A., Zamany, A., Williams, H., Wang, N., Kegley, A., Savin, D. P., Chen, H., & Sturrock, R. N. (2017). Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. Plant Biotechnology Journal, 15, 1149–1162. https://doi.org/10.1111/pbi.12705.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Lopez-Upton, J., White, T. L., & Huber, D. A. (2000). Species differences in early growth and rust incidence of loblolly and slash pine. Forest Ecology and Management, 132(2/3), 211–222.CrossRefGoogle Scholar
  174. Lorenz, W. W., Sun, F., Liang, C., Kolychev, D., Wang, H., Zhao, X., et al. (2006). Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiology, 26(1), 1–16.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Lorenz, W. W., Alba, R., Yu, Y. S., Bordeaux, J. M., Simões, M., & Dean, J. F. (2011). Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics, 12(1), 264.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Lu, P., & Derbowka, D. (2009). Breeding eastern white pine for blister rust resistance: A review of progress in Ontario. The Forestry Chronicle, 85(5), 745–755.CrossRefGoogle Scholar
  177. Lu, P., Sinclair, R. W., Boult, T. J., & Blake, S. G. (2005). Seedling survival of Pinus strobus and its interspecific hybrids after artificial inoculation of Cronartium ribicola. Forest Ecology and Management., 214, 344–357.CrossRefGoogle Scholar
  178. Lu, P., Colombo, S. J., & Sinclair, R. W. (2007). Cold hardiness of interspecific hybrids between Pinus strobus and P. wallichiana measured by post-freezing needle electrolyte leakage. Tree Physiology, 27(2), 243–250.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Mageroy, M. H., Parent, G., Germanos, G., Giguère, I., Delvas, N., Maaroufi, H., et al. (2015). Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. Plant Journal, 81, 68–80.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Mahalovich, M. F. (1995). The role of genetics in improving forest health. In Proc. National Silviculture Workshop, May 8–11, 1995, Mescalero, NM, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, General Technical Report 267, pp. 200–207. Available at: www.treesearch.fs.fed.us/pubs/23502
  181. Mahalovich, M. F. (2003). The ponderosa pine breeding, seed orchard and restoration program for the Northern Rockies. USDA Forest Service, Northern Region and Inland Empire Tree Improvement Cooperative.Google Scholar
  182. Mahalovich, M. F. (2004). Early survival, height and blister rust performance of Pinus albicaulis (whitebark pine) seed sources from the Inland Empire. Proc. Can. Tree Improv. Assoc., IUFRO 7.01.04 meeting. Kelowna, B.C. July 26-29.Google Scholar
  183. Matheson, A. C., Devey, M. E., Gordon, T. R., Balocchi, C., Carson, M. J., & Werner, W. (2006). The genetics of response to inoculation by pine pitch canker (Fusarium circinatum Nirenberg and O’Donnell) infection by seedlings of radiata pine (Pinus radiata D.Don). Australian Forestry, 69, 101–106.CrossRefGoogle Scholar
  184. Matras, J. (2001). Provenance studies of the Forest research institute on the European larch in 1948-2000. Prace Instytutu Badawczego Lenictwa, Seria A. (908/912): 41–63.Google Scholar
  185. Mayne, M. B., Subramanian, M., Blake, T. J., Coleman, J. R., & Blumwald, E. (1994). Changes in protein synthesis during drought conditioning in roots of jack pine seedlings (Pinus banksiana Lamb.). Tree Physiology, 14(5), 509–519.PubMedCrossRefPubMedCentralGoogle Scholar
  186. McDonald, G. I. (1985). Heritability of resistance in Douglas-fir to western spruce budworm. In The role of the host in the population dynamics of forest insects (pp. 96–107). Victoria, BC, Canadian Forestry Service, Pacific Forest Res. Centre.Google Scholar
  187. McDonald, G. I., & Hoff, R. J. (1971). Resistance to Cronartium ribicola in Pinus monticola: Genetic control of needle-spots-only resistance factors. Canadian Journal of Forest Research, 1(4), 197–202.CrossRefGoogle Scholar
  188. McKenzie, E. A., Elkinton, J. S., Casagrande, R. A., & Mayer, M. (2014). Terpene chemistry of eastern hemlocks resistant to hemlock woolly adelgid. Journal of Chemical Ecology, 40(9), 1003–1012.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Michelozzi, M., White, T. L., Squillace, A. E., & Lowe, W. J. (1995). Monoterpene composition and fusiform rust resistance in slash and loblolly pines. Canadian Journal of Forest Research, 25(2), 193–197.CrossRefGoogle Scholar
  190. Miller, J. T., & Ecroyd, C. E. (1987). Introduced forest trees in New Zealand: Recognition, role and see source. 2. Pinus contorta. FRI Bulletin 124/2.Google Scholar
  191. Moreira, X., Mooney, K. A., Rasmann, S., Petry, W. K., Carrillo-Gavilán, A., Zas, R., & Sampedro, L. (2014). Trade-offs between constitutive and induced defenses drive geographical and climatic clines in pine chemical defenses. Ecology Letters, 17(5), 537–546.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Morse, A. M., Nelson, C. D., Covert, S. F., Holliday, A. G., Smith, K. E., & Davis, J. M. (2004). Pine genes regulated by the necrotrophic pathogen Fusarium circinatum. Theoretical and Applied Genetics, 109(5), 922–932.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Muir, J. A., & Cobb, F. W., Jr. (2005). Infection of radiata and bishop pine by Mycosphaerella pini in California. Canadian Journal of Forest Research, 35(11), 2529–2538.CrossRefGoogle Scholar
  194. Nagata, Y., Tomaki, K., & Chiba, S. (1989). Variation and selection of vole resistance in Larix gmelini var. japonica and its hybrid. Technical note, Institute for Forest Tree Improvement, Oji Paper Co., Ltd., No.261, Reprinted from Trans. Mtg. Hokkaido Br. Jpn. For. Soc. 37th 1989.Google Scholar
  195. Natural Resources Canada. (2017). http://www.nrcan.gc.ca/forests/fire-insects-disturbances/pest-management/13361. Last checked 31 Jan 2018.
  196. Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. http://genomebiology.com/2014/15/3/R59.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Nielsen, U. B., Kirkeby-Thomsen, A., & Roulund, H. (2002). Genetic variation in resistance to Dreyfusia nordmannianae Eckst. infestation in Abies nordmanniana (Stev.). Forest Ecology and Management, 165, 271–283.CrossRefGoogle Scholar
  198. Nienstaedt, H. (1985). Inheritance and correlations of frost injury, growth, flowering, and cone characteristics in white spruce, Picea glauca (Moench) Voss. Canadian Journal of Forest Research, 15(3), 498–504.CrossRefGoogle Scholar
  199. Nishiyama, K., Watanabe, A., & Kubota, M. (2002). Discrimination of bark borer-resistant clones of Cryptomeria japonica using RAPD markers. Journal of the Japanese Forestry Society, 84(4), 262–266.Google Scholar
  200. Oh, E., & Hansen, E. M. (2007). Histopathology of infection and colonization of susceptible and resistant Port-Orford-Cedar by Phytophthora lateralis. Phytopathology, 97(6), 684–693.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Oh, E., Hansen, E., & Sniezko, R. A. (2006). Port-Orford-cedar resistant to Phytophthora lateralis. Forest Pathology, 36(6), 385–394.CrossRefGoogle Scholar
  202. Old, K. M., Libby, W. J., Russell, J. H., & Eldridge, K. G. (1986). Genetic variability in susceptibility of Pinus radiata to western gall rust. Silvae Genet., 35, 145–149.Google Scholar
  203. Oten, K. L., Merkle, S. A., Jetton, R. M., Smith, B. C., Talley, M. E., & Hain, F. P. (2014). Understanding and developing resistance in hemlocks to the hemlock woolly adelgid. Southeastern Naturalist, 13(6), 147–167.Google Scholar
  204. Pâques, L. E., Sylvestre-Guinot, G., & Delatour, C. (1999). Variabilité clonale de la race polonica du mélèze d'Europe pour la résistance à Lachnellula willkommii. Annals of Forest Science, 56(2), 155–166.CrossRefGoogle Scholar
  205. Parent, G. J., Giguère, I., Germanos, G., Lamara, M., Bauce, É., & MacKay, J. J. (2017). Insect herbivory (Choristoneura fumiferana, Tortricidea) underlies tree population structure (Picea glauca, Pinaceae). Scientific Reports, 7, 42273.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Patton, R. F. (1972). A brief conspectus of pathology and genetics of Cronartium ribicola as related to resistance (p. 681). Biology of Rust Resistance in Forest Trees. Miscellaneous Publication no. 1221. Washington, DC: U.S. Department of Agriculture, Forest Service.Google Scholar
  207. Persson, T., Andersson, B., & Ericsson, T. (2010). Relationship between autumn cold hardiness and field performance in northern Pinus sylvestris. Silva Fennica, 44(2), 255–266.CrossRefGoogle Scholar
  208. Porth, I., Hamberger, B., White, R., & Ritland, K. (2011). Defense mechanisms against herbivory in Picea: Sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics, 12(1), 608.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Potter, K. M., & Frampton, J. (2003). Genetic variation in Fraser Fir mortality due to Phytophthora root rot. In C. R. McKinley (Ed.), Proceedings 27th Southern Forest Tree Improvement Conference, Stillwater, Oklahoma, USA, June 24–27, 2003, pp. 72–74.Google Scholar
  210. Prada, E., Alía, R., Climent, J., & Díaz, R. (2014). Seasonal cold hardiness in maritime pine assessed by different methods. Tree Genetics & Genomes, 10(3), 689–701.CrossRefGoogle Scholar
  211. Quencez, C., & Bastien, C. (2001). Genetic variation within and between populations of Pinus sylvestris L. (Scots pine) for susceptibility to Melampsora pinitorqua Rostr. (pine twist rust). Heredity, 86, 36–44.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Quesada, T., Gopal, V., Cumbie, W. P., Eckert, A. J., Wegrzyn, J. L., Neale, D. B., et al. (2010). Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics, 186(2), 677–686.PubMedPubMedCentralGoogle Scholar
  213. Quesada, T., Resende, M. F., Jr., Muñoz, P., Wegrzyn, J. L., Neale, D. B., Kirst, M., et al. (2014). Mapping fusiform rust resistance genes within a complex mating design of loblolly pine. Forests, 5(2), 347–362.Google Scholar
  214. Ralph, S. G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J. A., Nelson, C. C., et al. (2006). Conifer defence against insects: Microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant, Cell & Environment, 29(8), 1545–1570.CrossRefGoogle Scholar
  215. Reglinski, T., Stavely, F. J. L., & Taylor, J. T. (1998). Induction of phenylalanine ammonia lyase activity and control of Sphaeropsis sapinea infection in Pinus radiata by 5-chlorosalicylic acid. Forest Pathology, 28(3), 153–158.CrossRefGoogle Scholar
  216. Rehfeldt, G. E. (1987). Components of adaptive variation in Pinus contorta from the Inland Northwest. USDA For. Serv. Inter-mountain Research Station Research Paper INT-375, 11 pp.Google Scholar
  217. Rehfeldt, G. E. (1992). Breeding strategies for Larix occidentalis: Adaptations to the biotic and abiotic environment in relation to improving growth. Canadian Journal of Forest Research, 22, 5–13.Google Scholar
  218. Roach, C. R., Hall, D. E., Zerbe, P., & Bohlmann, J. (2014). Plasticity and evolution of (+)-3-carene synthase and (−)-sabinene synthase functions of a Sitka spruce monoterpene synthase gene family associated with weevil resistance. Journal of Biological Chemistry, 289(34), 23859–23869.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Robert, J. A., Madilao, L. L., White, R., Yanchuk, A., King, J., & Bohlmann, J. (2010). Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid,(+)-3-carene, and terpinolene with resistance against white pine weevil. Botany, 88(9), 810–820.CrossRefGoogle Scholar
  220. Robinson, R. M., & Morrison, D. J. (1994). Resistance mechanisms of Larix occidentalis (western larch) to Armillaria ostoyae in the southern interior of British Columbia. Pages 26–33 in Proceedings of the Eighth International Conference on Root and Butt Rots, August 9-16, 1993, Wik, Sweden and Haikko, Finland. Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
  221. Roth, L. F. (1974). Resistance of ponderosa pine to dwarf mistletoe. Silvae Genetics, 23(4), 116–120.Google Scholar
  222. Russell, J. H. (2004). Breeding western redcedar for herbivore resistance. Proc. Can. Tree Improv. Assoc., IUFRO 7.01.04 meeting. Kelowna, BC, July 26–29.Google Scholar
  223. Russell, J. H., Kope, H. H., Ades, P., & Collison, H. (2007). Variation in cedar leaf blight (Didymascella thujina) resistance of western redcedar. Canadian Journal of Forest Research, 37, 1978–1986.CrossRefGoogle Scholar
  224. Santini, A., Camussi, A., & Raddi, P. (1997). Genetic variability of canker resistance trait in Cupressus sempervirens L. progenies. Journal of Applied Genetics, 38(4), 453–461.Google Scholar
  225. Sartor, C. F., & Neel, W. W. (1971). Variable susceptibility to Dioryctria amatella (Hulst) (Lepidoptera: Phycitidae) among pines in clonal seed orchards. In Proceeding, 11th conference on Southern Forest Tree Improvement (pp. 91–94).Google Scholar
  226. Sasaki, M., Okanura, M., Fujisawa, Y., & Nishimura, K. (2003). Progress of the breeding project on resistance to sugi bark midges. Bulletin of the Forest Tree Breeding Institute, 19, 1–12.Google Scholar
  227. Sasse, J., Elms, S., & Kube, P. (2009). Genetic resistance in Pinus radiata to defoliation by the pine aphid Essigella californica. Australian Forestry, 72, 25–31.CrossRefGoogle Scholar
  228. Scharpf, R. F., & Roth, L. F. (1992). Resistance of ponderosa pine to western dwarf mistletoe in Central Oregon. USDA Forest Service Res. Paper PSW-RP-208.Google Scholar
  229. Schneck, V. (1992). Scots pine breeding at Waldsieversdorf and its impact on management in the Northeastern German lowland. Silvae Genet., 41(3), 174–180.Google Scholar
  230. Shifley, S. R., & Moser, W. K. (Eds.). (2016). Future forests of the northern United States. Gen. Tech. Rep. NRS-151. Newtown Square, PA: U.S (388 p). Forest Service, Northern Research Station: Department of Agriculture.Google Scholar
  231. Shin, D. I., Podila, G. K., Huang, Y., & Karnosky, D. F. (1994). Transgenic larch expressing genes for herbicides and insect resistance. Canadian Journal of Forest Research, 24, 2059–2067.CrossRefGoogle Scholar
  232. Sierra-Lucero, V., McKeand, S. E., Huber, D. A., Rockwood, D. L., & White, T. L. (2002). Performance differences and genetic parameters for four coastal provenances of loblolly pine in the Southeastern United States. Forest Science, 48(4), 732–742.Google Scholar
  233. Silim, S. N., & Lavender, D. P. (1994). Seasonal patterns and environmental regulation of frost hardiness in shoots of seedlings of Thuja plicata, Chamaecyparis nootkatensis, and Picea glauca. Canadian Journal of Botany, 72(3), 309–316.CrossRefGoogle Scholar
  234. Simpson, J. A., & Ades, P. K. (1990). Screening Pinus radiata families and clones for diseases and pest insect resistance (review). Australian Forestry, 53(3), 194–199.CrossRefGoogle Scholar
  235. Skov, E., & Wellendorf, H. (2000). RAPD markers linked to major genes behind field resistance against the green spruce aphid Elatobium abietinum (Walker) in Picea sitchensis (Bong.(Carr.)). Forest Genetics, 7(3), 233–246.Google Scholar
  236. Smith, K. E., Morse, A. M., Kayihan, G., Huber, D. A., White, T. L., Nelson, C. D., & Davis, J. M. (2003). Molecular pathology of pitch canker disease. In C. R. McKinley, (Ed.), Proceedings 27th Southern Forest Tree Improvement Conference (p. 214), Stillwater, Oklahoma, USA, June 24–27, 2003.Google Scholar
  237. Smith, J. A., Blanchette, R. A., Burnes, T. A., Jacobs, J. J., Higgins, L., Witthuhn, B. A., David, A. J., & Gillman, J. H. (2005). Proteomic comparison of needles from blister rust-resistant and susceptible Pinus strobus seedlings reveals up-regulation of putative disease resistance proteins. Molecular Plant Microbe Interactions, 19(2), 150–160.CrossRefGoogle Scholar
  238. Smith, J. A., Blanchette, R. A., Burnes, T. A., Gillman, J. H., & David, A. J. (2006a). Epicuticular wax and white pine blister rust resistance in resistant and susceptible selections of eastern white pine (Pinus strobus). Phytopathology, 96(2), 171–177.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Smith, J. A., Blanchette, R. A., Burnes, T. A., Jacobs, J. J., Higgins, L., Witthuhn, B. A., et al. (2006b). Proteomic comparison of needles from blister rust-resistant and susceptible Pinus strobus seedlings reveals upregulation of putative disease resistance proteins. Molecular Plant-Microbe Interactions, 19(2), 150–160.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Sniezko, R. A. (2003). Some considerations for using major gene resistance to Cronartium ribicola in Pinus monticola in Oregon and Washington. In Proceedings of the 50th Western International Forest Disease Work Conference (pp. 54–55), 7–11 Oct 2002, Powell River, BC, Canada.Google Scholar
  241. Sniezko, R. A. (2004). Genetic resistance in Port-Orford-cedar to the non-native root rot pathogen Phytophthora lateralis—2003 update. In B. W. Geils (Ed.), Proceedings of the 51st Western International Forest Disease Work Conference (pp. 127–131), 18–22 Aug 2003, Grants Pass, OR. Flagstaff, AZ: USDA Forest Service, Rocky Mountain Research Station.Google Scholar
  242. Sniezko, R. A & Hansen, E. M. (2001). Breeding Port-Orford-Cedar for resistance to Phytophthora lateralis. Proc. IUFRO 7.02.09 Albany, Australia, 30 Sept-5 Oct.Google Scholar
  243. Sniezko, R. A., & Hansen, E. (2003). Breeding Port-Orford-cedar for resistance to Phytophthora lateralis: Current status & considerations for developing durable resistance. In 2nd International IUFRO Working Party 7.02.09 Meeting. Sept. 30-Oct. 5, 2001, Albany, W. Australia (pp. 197–201). Murdoch: Murdoch University Print.Google Scholar
  244. Sniezko, R. A., & Kegley, A. (2003a). Blister rust resistance experiences in Oregon and Washington: Evolving perspectives. In Proceedings of the 50th Western International Forest Disease Work Conference (pp. 111–117), October 7–11, 2002, Powell River, BC, Canada.Google Scholar
  245. Sniezko, R. A., & Kegley, A. (2003b). Blister rust resistance of five-needle pines in Oregon and Washington. In Proceedings of the Second IUFRO Rusts of Forest Trees Working Party Conference (pp. 101–112), 19–23 Aug 2002, Yangling, China. Forest Research. 16 (Suppl.): 1–228.Google Scholar
  246. Sniezko, R. A., & Kegley, A. (2005). White pine blister rust resistance in Pinus monticola and P. lambertiana seedling families following artificial inoculation with two sources of blister rust. Poster Presentation. In Forest Genetics and Tree Breeding in the Age of Genomics: Progress and Future, IUFRO Joint Conference of Division 2, Conference Proceedings. November 1–5, 2005, Charleston, SC. North Carolina State University, p. 420.Google Scholar
  247. Sniezko, R. A., & Zambino, P. (2005). White pine blister rust resistance in North America white pines: current status and research needs. In Forest Genetics and Tree Breeding in the Age of Genomics: Progress and Future, IUFRO Joint Conference of Division 2, Conference Proceedings. November 1–5, 2005, Charleston, SC. North Carolina State University. pp. 285–286.Google Scholar
  248. Sniezko, R. A., Bower, A., & Danielson, J. (2000a). A comparison of early field results of white pine blister rust resistance of sugar pine and western white pine. Hort Technology, 10, 519–522.Google Scholar
  249. Sniezko, R. A., Elliott, L., Linn, J., Goheen, D. G., Hansen, E., Casavan, K., Kitzmiller, J., & Rose, D. L. (2000b). Operational breeding program for resistance to an exotic root disease in Port-Orford-Cedar. Poster Presentation. Washington, DC: Society of American Foresters National Convention.Google Scholar
  250. Sniezko, R. A., Elliott, L., Goheen, D. G., Casavan, K., Hansen, E., Frank, C., & Angwin, P. (2003a). Development of Phytophthora lateralis resistant Port-Orford-cedar for restoration in the Pacific Northwest. Poster Presentation, In 2002 North American Forest Biology Workshop, Pullman, Washington.Google Scholar
  251. Sniezko, R. A., Kitzmiller, J., Elliott, L., & Hamlin, J. E. (2003b). Breeding for resistance to Phytophthora lateralis. In A range-wide assessment of Port-Orford-Cedar (Chamaecyparis lawsoniana) on Federal lands. U.S. Department of Agriculture, Forest Service, and U.S. Department of the Interior, Bureau of Land Management, pp. 77–89.Google Scholar
  252. Sniezko, R. A., Bower, A., & Kegley, A. (2004a). Variation in Cronartium ribicola field resistance among 13 Pinus monticola and 12 P. lambertiana families: early results from Happy Camp. In R. A. Sniezko, S. Samman, S. E. Schlarbaum, & H. B. Kriebel (Eds.), Breeding and genetic resources of five-needle pines: genetics, breeding, and adaptability, Proceedings of the IUFRO 2.02.15 Working Party Conference. July 23–27, 2001, Medford, OR. Proceedings RMRS-P-32. USDA Forest Service Rocky Mountain Research Station, Ft. Collins, CO, pp. 203–208.Google Scholar
  253. Sniezko, R. A., Samman, S., Schlarbaum, S. E., & Kriebel, H. B., (2004b). Breeding and genetic resources of five-needle pines: growth, adaptability, and pest resistance. Proceedings RMRS-P-32. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 259 pages.Google Scholar
  254. Sniezko, R. A., Mylecraine, K., Elliott, L., Kolpak, S., Reeser, P., & Hansen, E. (2005). Genetic resistance in Port-Orford-cedar to Phytophthora lateralis: Survival of seedlings from first orchard seed in greenhouse testing. Poster Presentation, 53rd WIFDWC 2005.Google Scholar
  255. Sniezko, R. A., Kegley, A., Danchok, B., & Conklin, D. (2006a). Variation in white pine blister rust resistance among nine seedling families of southwestern white pine – early results. Poster Presentation. Third Rusts of Forest Trees Conference, IUFRO Unit 7.02.05.Google Scholar
  256. Sniezko, R. A., Kolpak, S. E., Hansen, E. B., Goheen, D. J., Elliott, L. J., & Angwind, P. A. (2006b). Field survival of Phytophthora lateralis resistant and susceptible Port-Orford-cedar families after 53 months. In C. M. Brasier & T. Jung (Eds.), Advances in Research on Phytophthora Diseases of Forest Trees, Proceedings of the Third IUFRO Workshop on Phytophthoras in Forests and Natural Ecosystems, 11–17 September 2004, Freising, Germany (pp. 104–108). London: Forestry Commission Bulletin, Her Majesty’s Stationary Office.Google Scholar
  257. Sniezko, R. A., Kegley, A. J., & Danchok, R. (2008). White pine blister rust resistance in north American, Asian and European species-results from artificial inoculartion trials in Oregon. Annals of Forest Research, 51(1), 51–53.Google Scholar
  258. Sniezko, R. A., Mahalovich, M. F., Schoettle, A. W., & Vogler, D. R. (2011). Past and current investigations of the genetic resistance to Cronartium ribicola in high-elevation five-needle pines. In R. E. Keane, D. F. Tomback, M. P. Murray, C. M. Smith (Eds.), The future of high-elevation, five-needle white pines in Western North America: Proceedings of the High Five Symposium. 28–30 June 2010; Missoula, MT. Proceedings RMRS-P-63. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. pp. 246–264.Google Scholar
  259. Sniezko, R. A., Hamlin, J., Hansen, E. M., & Lucas, S. (2012a). Nine-year survival of 16 Phytophthora lateralis resistant and susceptible Port-Orford-Cedar families in a southern Oregon field trial. In Proc. Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees. United States Department of Agriculture, Forest Service Gen. Tech. Rep. PSW-GTR-240, pp. 348–355.Google Scholar
  260. Sniezko, R. A., Hamlin, J., & Hansen E. M. (2012b). Operational program to develop Phytophthora lateralis-resistant populations of Port-Orford-cedar (Chamaecyparis lawsoniana). In Proc. Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees. United States Department of Agriculture, Forest Service Gen. Tech. Rep. PSW-GTR-240, pp. 65–79.Google Scholar
  261. Sniezko, R. A., Yanchuk, A. D., Kliejunas, J. T., Palmieri, K. M., Alexander, J. M., & Frankel, S. J., tech. coords. (2012c). Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. p. 372.Google Scholar
  262. Sniezko, R. A., Smith, J., Liu, J. J., & Hamelin, R. C. (2014). Genetic resistance to fusiform rust in southern pines and white pine blister rust in white pines—A contrasting tale of two rust pathosystems—Current status and future prospects. Forests, 5(9), 2050–2083.CrossRefGoogle Scholar
  263. Sniezko, R. A., Danchok, R., Savin, D. P., Liu, J.-J., & Kegley, A. (2016). Genetic resistance to white pine blister rust in limber pine (Pinus flexilis): Major gene resistance in a northern population. Canadian Journal of Forest Research., 46(9), 1173–1178. https://doi.org/10.1139/cjfr-2016-0128.CrossRefGoogle Scholar
  264. Son, D. S., Eom, T. J., Choi, C. O., & Zhang, R. M. (1999). Effects of controlling the pine needle gall midge by salicylic acid content in needles of some Pinus spp. Journal of Korean Forestry Society, 88, 31–37. (english summary).Google Scholar
  265. Sonesson, J., & Eriksson, G. (2003). Genetic variation in drought tolerance in Picea abies seedlings and its relationship to growth in controlled and field environments. Scandinavian Journal of Forest Research, 18(1), 7–18.CrossRefGoogle Scholar
  266. Stephan, B. R. (1973). Uber Anfalligkeit und Resistenz von Douglasien-Herkuften gegenuber Rhabdocline Pseudotsugae. Silvae Genetica, 33, 149–153.Google Scholar
  267. Sturrock, R. (2005). Investigations of Douglas-fir resistance to Phellinus weirii. TICtalk, a publication of the Forest Genetics Council of British Columbia, 6(1), 3–7. Available at : www.fgcouncil.bc.ca/tictalk-jun05-web.pdf
  268. Sturrock, R. N., Islam, M. A., & Ekramoddoullah, A. K. M. (2007). Host-pathogen interactions in Douglas-fir seedlings infected by Phellinus sulphurascens. Phytopathology, 97, 1406–1414.PubMedCrossRefPubMedCentralGoogle Scholar
  269. Swedjemark, G., Stenlid, J., & Karlsson, B. (1997). Genetic variation among clones of Picea abies in resistance to growth of Heterobasidium annosum. Silvae Genet., 46, 369–374.Google Scholar
  270. Tan, W., Blake, T. J., & Boyle, T. J. (1992). Drought tolerance in faster-and slower-growing black spruce (Picea mariana) progenies: II. Osmotic adjustment and changes of soluble carbohydrates and amino acids under osmotic stress. Physiologia Plantarum, 85(4), 645–651.CrossRefGoogle Scholar
  271. Tan, W., Blake, T. J., & Boyle, T. J. (1995). Early selection for drought tolerance and relationship to dry weight partitioning in black spruce families. Forest Science, 41(1), 168–180.Google Scholar
  272. Tang, W., & Tian, Y. (2003). Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. Journal of Experimental Botany, 54, 835–844.PubMedCrossRefPubMedCentralGoogle Scholar
  273. Tang, W., Peng, X., & Newton, R. J. (2005). Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiology and Biochemistry, 43(2), 139–146.PubMedCrossRefPubMedCentralGoogle Scholar
  274. Temel, F., Johnson, G. R., & Stone, J. K. (2004). The relationship between Swiss needle cast symptom severity and level of Phaeocryptopus gaeumannii colonization in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Pathology, 34, 383–394.CrossRefGoogle Scholar
  275. Temel, F., Johnson, G. R., & Adams, W. T. (2005). Early genetic testing of coastal Douglas-fir for Swiss needle cast tolerance. Canadian Journal of Forest Research, 35(3), 521–529.CrossRefGoogle Scholar
  276. Terada, K. (1992). Developing strains resistance to the pine needle gall midge (Thecodiplosis japonensis Uchida et Inouye) in Pinus thunbergii Parl. Bulletin of the Forest Tree Breeding Institute, 10, 1–32.Google Scholar
  277. Thiel, D., Nagy, L., Beierkuhnlein, C., Huber, G., Jentsch, A., Konnert, M., & Kreyling, J. (2012). Uniform drought and warming responses in Pinus nigra provenances despite specific overall performances. Forest Ecology and Management, 270, 200–208.CrossRefGoogle Scholar
  278. Toda, T., Kurinobu, S., & Sasaki, M. (2002). Growth and survival rate at the seventh year after selecting the progenies of pine trees for resistance to pine wood nematodes by inoculation test. Journal of the Japanese Forestry Society, 84(3), 188–192.Google Scholar
  279. Ueki, C. (2004). Studies on selection of sugi resistant to the sugi bark borer in the Kansai breeding region. Bulletin of the Forest Tree Breeding Institute, 20, 219–292.Google Scholar
  280. United States Dept. of Agriculture, Forest Service, Forest Health Protection. (2017). https://foresthealth.fs.usda.gov/portal (Last checked April, 2017).
  281. Vázquez-Lobo, A., Amanda, R., Martínez-García, P. J., Vangestel, C., Wegzryn, J. L., Ćalić, I., Burton, D., Davis, D., Kinloch, B., Vogler, D., & Neale, D. B. (2017). Finding loci associated to partial resistance to white pine blister rust in sugar pine (Pinus lambertiana Dougl.). Tree Genetics & Genomes, 13(5), 108.CrossRefGoogle Scholar
  282. Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I., & Johnsen, Ø. (2012). Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genetics & Genomes, 8(5), 957–973.CrossRefGoogle Scholar
  283. Vivas, M., Zas, R., & Solla, A. (2012). Screening of Maritime pine (Pinus pinaster) for resistance to Fusarium circinatum, the causal agent of Pitch Canker disease. Forestry, 85, 185–192.CrossRefGoogle Scholar
  284. Vogan, P. J., & Schoettle, A. W. (2015). Selection for resistance to white pine blister rust affects the abiotic stress tolerances of limber pine. Forest Ecology and Management, 344, 110–119.CrossRefGoogle Scholar
  285. Wallis, C., Eyles, A., Chorbadjian, R., McSpadden Gardener, B., Hansen, R., Cipollini, D., et al. (2008). Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytologist, 177(3), 767–778.PubMedCrossRefPubMedCentralGoogle Scholar
  286. Wallis, C. M., Reich, R. W., Lewis, K. J., & Huber, D. P. (2010). Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Canadian Journal of Forest Research, 40(12), 2333–2344.CrossRefGoogle Scholar
  287. Wang, Q. M., et al. (1998). Selecting provenances and individuals for resistance to die-back and brown-spot needle blight disease and growth in loblolly and slash pine in Hanjing, Jiangsu. Journal of Jiansu Forestry Science and Technology, 25(4), 1–7.Google Scholar
  288. Wellendorf, H., & Thomsen, I. M. (2008). Genetic variation in resistance against Heterobasidion annosum (Fr.) Bref. in Picea abies (L.) Karst. expressed after inoculation of neighboring stumps. Silvae Genetica, 57(1–6), 312–324.CrossRefGoogle Scholar
  289. Westbrook, J. W., Resende, M. F., Munoz, P., Walker, A. R., Wegrzyn, J. L., Nelson, C. D., et al. (2013). Association genetics of oleoresin flow in loblolly pine: Discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytologist, 199(1), 89–100.PubMedPubMedCentralGoogle Scholar
  290. Wheeler, N. C., Kriebel, H. B., Lee, C. H., Read, R. A., & Wright, J. W. (1976). 15-year performance of European black pine in provenance tests in North Central United States. Silvae Genetica, 25(1), 1–6.Google Scholar
  291. Wheeler, N. C., Jermstad, K. D., Krutovsky, K., Aitken, S. N., Howe, G. T., Krakowski, J., & Neale, D. B. (2005). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir IV. Cold-hardiness QTL verification and candidate gene mapping. Molecular Breeding, 15(2), 145–156.Google Scholar
  292. Whitehill, J. G. A., Henderson, H., Strong, W., Jaquish, B., & Bohlmann, J. (2016). Function of Sitka spruce stone cells as a physical defense against white pine weevil. Plant, Cell and Environment. https://doi.org/10.1111/pce.12810.
  293. Wilcox, P. L. (1982). Genetic variation and inheritance of resistance to Dothistroma needle blight in Pinus radiata. New Zealand Journal of Forestry Science, 12(1), 14–35.Google Scholar
  294. Wilcox, M. D., & Miller, J. T. (1975). Pinus nigra provenance variation and selection in New Zealand. Silvae Genetica, 24(5/6), 132–140.Google Scholar
  295. Wilcox, P. L., Amerson, H. V., Kuhlman, E. G., Liu, B. H., O’Malley, D. M., & Sederoff, R. R. (1996). Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proceedings of the National Academy of Sciences, 93(9), 3859–3864.CrossRefGoogle Scholar
  296. Wilkinson, R. C. (1983). Seed source variation in susceptibility of eastern white pine to white pine weevil attack. Proceedings, Twenty-eighth Northeastem Forest Tree Improvement Conference; July 7-9, 1983; Durham, NH. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station; and Durham, NH: University of New Hampshire, Institute of Natural and Environmental Resources. pp. 134–139.Google Scholar
  297. Williamson, B., Mitchell, C. P., & Millar, C. S. (1976). Histochemistry of Corsican Pine Needles Infected by Lophodermella sulcigena (Rostr.) v. Höhn. Annals of Botany, 40(2), 281–288.CrossRefGoogle Scholar
  298. Wingfield, M. J., Jacobs, A., Coutinho, T. A., Ahumada, R., & Wingfield, B. D. (2002). First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathology, 51(3), 397–397.CrossRefGoogle Scholar
  299. Wingfield, M. J., Hammerbacher, A., Ganley, R. J., Steenkamp, E. T., Gordon, T. R., Wingfield, B. D., & Coutinho, T. A. (2008). Pitch canker caused by Fusarium circinatum–a growing threat to pine plantations and forests worldwide. Australasian Plant Pathology, 37(4), 319–334.CrossRefGoogle Scholar
  300. Woo, K. S., Fins, L., McDonald, G. I., & Wiese, M. V. (2001). Differences in needle morphology between blister rust resistant and susceptible western white pine stocks. Canadian Journal of Forest Research, 31(11), 1880–1886.CrossRefGoogle Scholar
  301. Wu, H. X., & Ying, C. C. (1997). Genetic parameters and selection efficiencies in resistance to western Gall Rust, Stalactiform blister rust, needle cast, and sequoia pitch moth in Lodgepole pine. Forest Science, 43, 571–581.Google Scholar
  302. Yanchuk, A., & Wheeler, N. (2008). Selection and breeding for insect and disease resistance. FAO Forestry Department Review: http://www.fao.org/forestry/26445/en/ (last checked 20 March 2017).
  303. Yanchuk, A. D., Wallin, K., & Murphy, J. C. (2008). Evaluation of genetic variation and resistance in lodgepole pine in the early stages of a mountain pine beetle outbreak. Tree Genetics and Genomes, 4, 171–180.CrossRefGoogle Scholar
  304. Yi, N. J., Hang, Z. M., et al. (2000). Genetic variation of RAPD markers in a disease resistant seed orchard of Pinus elliottii. Scientia Silvae Sinicae, 36(sp. 1), 51–55.Google Scholar
  305. Young, C. H. (2003). USDA Forest Service forest health protection resistance screening center. In Proc. 27th South For Tree Improv Conf. Stillwater, OK. CR McKinley (Ed.), p. 201.Google Scholar
  306. Yu, X. T. (2000). A summary of the studies on Chinese fir in the 1990s. II. Summary of research and development on disease and insect control, wood properties and future research directions. Journal of Fujian College of Forestry, 20(2), 283–288.Google Scholar
  307. Yu, Q., & Yang, D.-Q. (2003). Genetic variation in decay resistance and its correlation to wood density and growth in white spruce. Canadian Journal of Forest Research, 33(11), 2177–2183.CrossRefGoogle Scholar
  308. Zas, R., Solla, A., & Sampedro, L. (2007). Variography and kriging allow screening Pinus pinaster resistant to Armillaria ostoyae in field conditions. Forestry, 80(2), 201–209.CrossRefGoogle Scholar
  309. Zeng, W., Sun, S., Li, H., O’Malley, D., Amerson, H., & Li, B. (2004). Search for major genes to improve productivity and rust resistance of loblolly pine. 2004 TAPPI Paper Summit - Spring Technical and International Environmental Conference. 2004, pp. 661–668.Google Scholar
  310. Zhao, Y. J. (2000). Genetic test for introduced loblolly pine family. Journal of Fujian College of Forestry, 20(3), 276–279.Google Scholar
  311. Zhou, T. X., & Ma, C. G. (2000). The clonal selection and breeding of Chinese fir: Kaitian series. Scientia Silvae Sinicae, 36(3), 40–45.Google Scholar
  312. Zhou, L., Creech, D. L., Krauss, K. W., Yunlong, Y., & Kulhavy, D. L. (2010b). Can we improve the salinity tolerance of genotypes of Taxodium by using varietal and hybrid crosses? Hortscience, 45(12), 1773–1778.CrossRefGoogle Scholar
  313. Zobel, D. B., Roth, L. F., & Hawk, G. M. (1985). Ecology, pathology and management of Port-Orford-cedar (Chamaecyparis lawsoniana). Gen. Tech. Rep. PNW 184. Portland, OR. US Department of Agriculture, Forest Service, Pac. NW For. And Range Exp. Sta. 161 p.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations