Advertisement

Conservation Genetics

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

The topic of conservation genetics in forestry dates to nearly the beginning of breeding and genetic research in forest trees. In the early literature, the topic was often labeled gene conservation, whereas more recently it is generally labeled as conservation genetics, the distinction being that it is not individual genes that are conserved but entire genomes found in individual trees. The desire and justification for conservation genetics in forestry emerged both from the perspective of preserving genetic diversity for future breeding applications (Zobel 1978) and more broadly to avoid extinction of species due to the loss of genetic diversity (Ledig 1988; Eriksson et al. 1993). In the latter case, the driving principle is to maintain adaptive evolutionary potential and to a lesser extent limit inbreeding in naturally outcrossing species.

References

  1. Aagaard, J. E., Krutovskii, K. V., & Strauss, S. H. (1998b). RAPD markers of mitochondrial origin exhibit lower population diversity and higher differentiation than RAPDs of nuclear origin in Douglas fir. Molecular Ecology, 7(7), 801–812.CrossRefGoogle Scholar
  2. Adams, W. T., Zuo, J., Shimizu, J. Y., & Tappeiner, J. C. (1998). Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir. Forest Science, 44(3), 390–396.Google Scholar
  3. Aguirre-Planter, E., Furnier, G. R., & Eguiarte, L. E. (2000). Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from southern Mexico and Guatemala. American Journal of Botany, 87(3), 362–371.PubMedPubMedCentralGoogle Scholar
  4. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95–111.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alfaro, R. I., Fady, B., Vendramin, G. G., Dawson, I. K., Fleming, R. A., Sáenz-Romero, C., et al. (2014). The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. Forest Ecology and Management, 333, 76–87.CrossRefGoogle Scholar
  6. Al-Rabab’ah, M. A., & Williams, C. G. (2004). An ancient bottleneck in the Lost Pines of central Texas. Molecular Ecology, 13(5), 1075–1084.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anderson, L. L., Hu, F. S., Nelson, D. M., Petit, R. J., & Paige, K. N. (2006). Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences, 103(33), 12447–12450.CrossRefGoogle Scholar
  8. Aravanopoulos, F. A. (2011). Genetic monitoring in natural perennial plant populations. Botany, 89(2), 75–81.CrossRefGoogle Scholar
  9. Aravanopoulos, F. A. (2016). Conservation and monitoring of tree genetic resources in temperate forests. Current Forestry Reports, 2(2), 119–129.CrossRefGoogle Scholar
  10. Aravanopoulos, F. A., Tollefsrud, M. M., Graudal, L., Koskela, J., Kätzel, R., Soto, A., et al. (2015). Development of genetic monitoring methods for genetic conservation units of forest trees in Europe. European Forest Genetic Resources Programme (EUFORGEN)Google Scholar
  11. Bergmann, F., Gregorius, H. R., & Larsen, J. B. (1990). Levels of genetic variation in European silver fir (Abies alba). Genetica, 82(1), 1–10.CrossRefGoogle Scholar
  12. Bower, A. D., & Aitken, S. N. (2006). Geographic and seasonal variation in cold hardiness of whitebark pine. Canadian Journal of Forest Research, 36(7), 1842–1850.CrossRefGoogle Scholar
  13. Bower, A. D., & Aitken, S. N. (2007). Mating system and inbreeding depression in whitebark pine (Pinus albicaulis Engelm.). Tree Genetics & Genomes, 3(4), 379–388.CrossRefGoogle Scholar
  14. Bower, A. D., & Aitken, S. N. (2008). Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). American Journal of Botany, 95(1), 66–76.PubMedCrossRefGoogle Scholar
  15. Bruederle, L. P., Tomback, D. F., Kelly, K. K., & Hardwick, R. C. (1998). Population genetic structure in a bird-dispersed pine, Pinus albicaulis (Pinaceae). Canadian Journal of Botany, 76(1), 83–90.CrossRefGoogle Scholar
  16. Buchert, G. P., Rajora, O. P., Hood, J. V., & Dancik, B. P. (1997). Effects of harvesting on genetic diversity in old-growth eastern white pine in Ontario, Canada. Conservation Biology, 11(3), 747–758.CrossRefGoogle Scholar
  17. Camcore. (2006). 2006 Camcore annual report. Camcore international tree conservative and domestication. Raleigh, NC: Department of Forestry and Environmental Resources, North Carolina State University.Google Scholar
  18. Chen, C., Durand, E., Forbes, F., & François, O. (2007). Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study. Molecular Ecology Notes, 7(5), 747–756.CrossRefGoogle Scholar
  19. Cuenca, A., Escalante, A. E., & Piñero, D. (2003). Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Molecular Ecology, 12(8), 2087–2097.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Delgado, P., Chaos, A., & Alvarez-Buylla, E. R. (1999). High population differentiation and genetic variation in the endangered Mexican pine Pinus rzedowskii (Pinaceae). American Journal of Botany, 86(5), 669–676.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Delgado, P., Salas-Lizana, R., Vázquez-Lobo, A., Wegier, A., Anzidei, M., Alvarez-Buylla, E. R., et al. (2007). Introgressive hybridization in Pinus montezumae Lamb and Pinus pseudostrobus Lindl.(Pinaceae): Morphological and molecular (cpSSR) evidence. International Journal of Plant Sciences, 168(6), 861–875.CrossRefGoogle Scholar
  22. DeWald, L. E., & Kolanoski, K. M. (2017). Conserving genetic diversity in ecological restoration: A case study with ponderosa pine in northern Arizona, USA. New Forests, 48(2), 337–361.CrossRefGoogle Scholar
  23. Díaz, V., Muniz, L. M., & Ferrer, E. (2001). Random amplified polymorphic DNA and amplified fragment length polymorphism assessment of genetic variation in Nicaraguan populations of Pinus oocarpa. Molecular Ecology, 10(11), 2593–2603.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Distribution map of Abies alba EUFORGEN 2009. www.euforgen.org.
  25. Dubreuil, M., Riba, M., González-Martínez, S. C., Vendramin, G. G., Sebastiani, F., & Mayol, M. (2010). Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. American Journal of Botany, 97(2), 303–310.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dumroese, R. K., Williams, M. I., Stanturf, J. A., & Clair, J. B. S. (2015). Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering. New Forests, 46(5–6), 947–964.CrossRefGoogle Scholar
  27. Echt, C. S., DeVerno, L. L., Anzidei, M., & Vendramin, G. G. (1998). Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Molecular Ecology, 7(3), 307–316.CrossRefGoogle Scholar
  28. Eckert, A. J., Tearse, B. R., & Hall, B. D. (2008). A phylogeographical analysis of the range disjunction for foxtail pine (Pinus balfouriana, Pinaceae): The role of Pleistocene glaciation. Molecular Ecology, 17(8), 1983–1997.PubMedCrossRefPubMedCentralGoogle Scholar
  29. El-Kassaby, Y. A., & Benowicz, A. (2000). Effects of commercial thinning on genetic, plant species and structural diversity in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands. Forest Genetics, 7, 193–203.Google Scholar
  30. El-Kassaby, Y. A., Dunsworth, B. G., & Krakowski, J. (2003). Genetic evaluation of alternative silvicultural systems in coastal montane forests: Western hemlock and amabilis fir. Theoretical and Applied Genetics, 107(4), 598–610.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Eriksson, G., Namkoong, G., & Roberds, J. H. (1993). Dynamic gene conservation for uncertain futures. Forest Ecology and Management, 62(1–4), 15–37.CrossRefGoogle Scholar
  32. Fady, B., Forest, I., Hochu, I., Ribiollet, A. D., De Beaulieu, J. L., & Pastuszka, P. (1999). Genetic differentiation in Abies alba Mill. populations from Southeastern France. International Journal of Forest Genetics.Google Scholar
  33. Fageria, M. S., & Rajora, O. P. (2013). Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evolutionary Applications, 6(5), 778–794.PubMedPubMedCentralGoogle Scholar
  34. Fageria, M. S., & Rajora, O. P. (2014). Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan. Tree Genetics & Genomes, 10(2), 287–296.CrossRefGoogle Scholar
  35. Fazekas, A. J., & Yeh, F. C. (2006). Postglacial colonization and population genetic relationships in the Pinus contorta complex. Canadian Journal of Botany, 84(2), 223–234.Google Scholar
  36. Furnier, G. R., Knowles, P., Clyde, M. A., & Dancik, B. P. (1987). Effects of avian seed dispersal on the genetic structure of whitebark pine populations. Evolution, 41(3), 607–612.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gamache, I., Jaramillo-Correa, J. P., Payette, S., & Bousquet, J. (2003). Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: Imprint of a founder effect associated with postglacial colonization. Molecular Ecology, 12(4), 891–901.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gapare, W. J., Aitken, S. N., & Ritland, C. E. (2005). Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr) populations: Implications for conservation of widespread species. Biological Conservation, 123(1), 113–123.CrossRefGoogle Scholar
  39. Glaubitz, J. C., El-Kassaby, Y. A., & Carlson, J. E. (2000). Nuclear restriction fragment length polymorphism analysis of genetic diversity in western redcedar. Canadian Journal of Forest Research, 30(3), 379–389.CrossRefGoogle Scholar
  40. Godbout, J., Jaramillo-Correa, J. P., Beaulieu, J., & Bousquet, J. (2005). A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. Molecular Ecology, 14(11), 3497–3512.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Godbout, J., Fazekas, A., Newton, C. H., Yeh, F. C., & Bousquet, J. (2008). Glacial vicariance in the Pacific Northwest: Evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. Molecular Ecology, 17(10), 2463–2475.PubMedPubMedCentralGoogle Scholar
  42. Gömöry, D., Longauer, R., Liepelt, S., Ballian, D., Brus, R., Kraigher, H., et al. (2004). Variation patterns of mitochondrial DNA of Abies alba Mill. in suture zones of postglacial migration in Europe. Acta societatis botanicorum Poloniae, 73(3), 203–206.CrossRefGoogle Scholar
  43. Gömöry, D., Paule, L., Krajmerová, D., Romšáková, I., & Longauer, R. (2012). Admixture of genetic lineages of different glacial origin: A case study of Abies alba Mill. in the Carpathians. Plant Systematics and Evolution, 298(4), 703–712.CrossRefGoogle Scholar
  44. González-Martínez, S. C., Krutovsky, K. V., & Neale, D. B. (2006b). Forest-tree population genomics and adaptive evolution. New Phytologist, 170(2), 227–238.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Graudal, L., Aravanopoulos, F., Bennadji, Z., Changtragoon, S., Fady, B., Kjær, E. D., et al. (2014). Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. Forest Ecology and Management, 333, 35–51.CrossRefGoogle Scholar
  46. Guries, R. P., & Ledig, F. T. (1982). Genetic diversity and population structure in pitch pine (Pinus rigida Mill.). Evolution, 36(2), 387–402.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hamilton, J. A., Royauté, R., Wright, J. W., Hodgskiss, P., & Ledig, F. T. (2017). Genetic conservation and management of the California endemic, Torrey pine (Pinus torreyana Parry): Implications of genetic rescue in a genetically depauperate species. Ecology and Evolution, 7(18), 7370–7381.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hamrick, J. L. (2004). Response of forest trees to global environmental changes. Forest Ecology and Management, 197(1–3), 323–335.CrossRefGoogle Scholar
  49. Hastings, J. M., Potter, K. M., Koch, F. H., Megalos, M., & Jetton, R. M. (2017). Prioritizing conservation seed banking locations for imperiled hemlock species using multi-attribute frontier mapping. New Forests, 48(2), 301–316.CrossRefGoogle Scholar
  50. Hawley, G. J., Schaberg, P. G., DeHayes, D. H., & Brissette, J. C. (2005). Silviculture alters the genetic structure of an eastern hemlock forest in Maine, USA. Canadian Journal of Forest Research, 35(1), 143–150.CrossRefGoogle Scholar
  51. Hong, Y. P., Hipkins, V. D., & Strauss, S. H. (1993). Chloroplast DNA diversity among trees, populations and species in the California closed-cone pines (Pinus radiata, Pinus muricata and Pinus attenuata). Genetics, 135(4), 1187–1196.PubMedPubMedCentralGoogle Scholar
  52. IUCN Red List of Threatened Species. (2013). Available at http://www.iucnredlist.org/details/32479/0
  53. Jaramillo-Correa, J. P., & Bousquet, J. (2005). Mitochondrial genome recombination in the zone of contact between two hybridizing conifers. Genetics, 171(4), 1951–1962.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jaramillo-Correa, J. P., Beaulieu, J., Ledig, F. T., & Bousquet, J. (2006). Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Molecular Ecology, 15(10), 2787–2800.PubMedPubMedCentralGoogle Scholar
  55. Jaramillo-Correa, J. P., Aguirre-Planter, E., Khasa, D. P., Eguiarte, L. E., PiNEro, D., Furnier, G. R., & Bousquet, J. (2008). Ancestry and divergence of subtropical montane forest isolates: Molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Molecular Ecology, 17(10), 2476–2490.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jaramillo-Correa, J. P., Beaulieu, J., Khasa, D. P., & Bousquet, J. (2009). Inferring the past from the present phylogeographic structure of North American forest trees: Seeing the forest for the genes. Canadian Journal of Forest Research, 39(2), 286–307.CrossRefGoogle Scholar
  57. Jetton, R. M., Whittier, W. A., Dvorak, W. S., & Rhea, J. R. (2013). Conserved ex situ genetic resources of eastern and Carolina hemlock: Eastern North American conifers threatened by the hemlock woolly adelgid. Tree Planter’s Notes, 56(2), 59–71.Google Scholar
  58. Johansen, A. D., & Latta, R. G. (2003). Mitochondrial haplotype distribution, seed dispersal and patterns of postglacial expansion of ponderosa pine. Molecular Ecology, 12(1), 293–298.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jorgensen, S. M., & Hamrick, J. L. (1997). Biogeography and population genetics of whitebark pine, Pinus albicaulis. Canadian Journal of Forest Research, 27(10), 1574–1585.Google Scholar
  60. Jørgensen, S., Hamrick, J. L., & Wells, P. V. (2002). Regional patterns of genetic diversity in Pinus flexilis (Pinaceae) reveal complex species history. American Journal of Botany, 89(5), 792–800.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jost, L. O. U. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17(18), 4015–4026.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Keane, R. E., Tomback, D. F., Murray, M. P., & Smith, C. M. (2011). The future of high-elevation, five-needle white pines in Western North America: Proceedings of the High Five Symposium (Proceedings RMRS-P-63). Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 376 p., 63.Google Scholar
  63. Keane, R. E., Tomback, D. F., Aubry, C. A., Bower, A. D., Campbell, E. M., Cripps, C. L., et al. (2012). A range-wide restoration strategy for whitebark pine (Pinus albicaulis) (General Technical Report RMRS-GTR-279). Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 108 p., 279.CrossRefGoogle Scholar
  64. Khasa, D. P., Jaramillo-Correa, J. P., Jaquish, B., & Bousquet, J. (2006). Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 15(13), 3907–3918.PubMedPubMedCentralGoogle Scholar
  65. Knowles, P. (1985). Comparison of isozyme variation among natural stands and plantations: Jack pine and black spruce. Canadian Journal of Forest Research, 15(5), 902–908.CrossRefGoogle Scholar
  66. Konnert, M., & Bergmann, F. (1995). The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Systematics and Evolution, 196(1–2), 19–30.CrossRefGoogle Scholar
  67. Konnert, M., Maurer, W., Degen, B., & Kätzel, R. (2011). Genetic monitoring in forests-early warning and controlling system for ecosystemic changes. iForest-Biogeosciences and Forestry, 4(2), 77.CrossRefGoogle Scholar
  68. Krakowski, J., Aitken, S. N., & El-Kassaby, Y. A. (2003). Inbreeding and conservation genetics in whitebark pine. Conservation Genetics, 4(5), 581–593.CrossRefGoogle Scholar
  69. Latta, R. G., & Mitton, J. B. (1999). Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution, 53(3), 769–776.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ledig, F. T. (1988). The conservation of diversity in forest trees: Why and how should genes be conserved? Bioscience, 38(7), 471–479.CrossRefGoogle Scholar
  71. Ledig, F. T. (1992). Human impacts on genetic diversity in forest ecosystems. Oikos, 63, 87–108.CrossRefGoogle Scholar
  72. Ledig, F. T. (1999). Genetic diversity, genetic structure and biogeography of Pinus sabiniana Dougl. Divers. Distrib. 5:77–99.Google Scholar
  73. Ledig, F. T. (2000). Founder effects and the genetic structure of Coulter pine. Journal of Heredity, 91(4), 307–315.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ledig, F. T. (2012). Climate change and conservation. Acta Silvatica et Lignaria Hungarica, 8(1), 57–74.CrossRefGoogle Scholar
  75. Ledig, F. T., & Conkle, M. T. (1983). Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution, 37, 79–85.PubMedPubMedCentralGoogle Scholar
  76. Ledig, F. T., Jacob-Cervantes, V., Hodgskiss, P. D., & Eguiluz-Piedra, T. (1997). Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. Evolution, 51, 1815–1827.PubMedPubMedCentralGoogle Scholar
  77. Ledig, F. T., Bermejo-Velázquez, B., Hodgskiss, P. D., Johnson, D. R., Flores-López, C., & Jacob-Cervantes, V. (2000). The mating system and genic diversity in Martinez spruce, an extremely rare endemic of Mexico’s Sierra Madre Oriental: An example of facultative selfing and survival in interglacial refugia. Canadian Journal of Forest Research, 30(7), 1156–1164.CrossRefGoogle Scholar
  78. Ledig, F. T., Capó-Arteaga, M. A., Hodgskiss, P. D., Sbay, H., Flores-López, C., Conkle, M. T., & Bermejo-Velázquez, B. (2001). Genetic diversity and the mating system of a rare Mexican piñon, Pinus pinceana, and a comparison with Pinus maximartinezii (Pinaceae). American Journal of Botany, 88(11), 1977–1987.PubMedPubMedCentralGoogle Scholar
  79. Ledig, F. T., Hodgskiss, P. D., & Jacob-Cervantes, V. (2002). Genetic diversity, mating system, and conservation of a Mexican subalpine relict, Picea mexicana Martinez. Conservation Genetics, 3(2), 113–122.CrossRefGoogle Scholar
  80. Ledig, F. T., Hodgskiss, P. D., Krutovskii, K. V., Neale, D. B., & Eguiluz-Piedra, T. (2004). Relationships among the spruces (Picea, Pinaceae) of southwestern North America. Systematic Botany, 29(2), 275–295.CrossRefGoogle Scholar
  81. Ledig, F. T., Hodgskiss, P. D., & Johnson, D. R. (2005). Genic diversity, genetic structure, and mating system of Brewer spruce (Pinaceae), a relict of the Arcto-Tertiary forest. American Journal of Botany, 92(12), 1975–1986.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ledig, F. T., Hodgskiss, P. D., & Johnson, D. R. (2006a). Genetic diversity and seed production in Santa Lucia fir (Abies bracteata), a relict of the Miocene broadleaved evergreen forest. Conservation Genetics, 7(3), 383–398.Google Scholar
  83. Ledig, F. T., Hodgskiss, P. D., & Johnson, D. R. (2006b). The structure of genetic diversity in Engelmann spruce and a comparison with blue spruce. Botany, 84(12), 1806–1828.Google Scholar
  84. Lemieux, M. J., Beaulieu, J., & Bousquet, J. (2011). Chloroplast DNA polymorphisms in eastern hemlock: Range-wide genogeographic analyses and implications for gene conservation. Canadian Journal of Forest Research, 41(5), 1047–1059.CrossRefGoogle Scholar
  85. Li, P., & Adams, W. T. (1989). Range-wide patterns of allozyme variation in Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Forest Research, 19(2), 149–161.CrossRefGoogle Scholar
  86. Liepelt, S., Bialozyt, R., & Ziegenhagen, B. (2002). Wind-dispersed pollen mediates postglacial gene flow among refugia. Proceedings of the National Academy of Sciences, 99(22), 14590–14594.CrossRefGoogle Scholar
  87. Liepelt, S., Cheddadi, R., de Beaulieu, J. L., Fady, B., Gömöry, D., Hussendörfer, E., et al. (2009). Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—A synthesis from palaeobotanic and genetic data. Review of Palaeobotany and Palynology, 153(1–2), 139–149.CrossRefGoogle Scholar
  88. Lind, B. M., Friedline, C. J., Wegrzyn, J. L., Maloney, P. E., Vogler, D. R., Neale, D. B., & Eckert, A. J. (2017). Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Molecular Ecology, 26(12), 3168–3185.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lise, Y., Kaya, Z., Isik, F., Sabuncu, R., Kandemir, I., & Onde, S. (2007). The impact of over-exploitation on the genetic structure of Turkish red pine (Pinus brutia Ten.) populations determined by RAPD markers. Silva Fennica, 41(2), 211.CrossRefGoogle Scholar
  90. Liston, A., Parker-Defeniks, M., Syring, J. V., Willyard, A., & Cronn, R. (2007). Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: A case study in Pinus lambertiana. Molecular Ecology, 16(18), 3926–3937.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Little, E. L., Jr. (1971). Atlas of United States Trees. Volume 1. Conifer s and important hardwoods (Miscellaneous Publication 1146). Washington, DC: U.S. Department of Agriculture, Forest Service. 9 p., illus. [313 maps, folio].CrossRefGoogle Scholar
  92. Liu, J. J., Sniezko, R., Murray, M., Wang, N., Chen, H., Zamany, A., et al. (2016a). Genetic diversity and population structure of whitebark pine (Pinus albicaulis Engelm.) in western North America. PloS One, 11(12), e0167986.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Macdonald, S. E., Thomas, B. R., Cherniawsky, D. M., & Purdy, B. G. (2001). Managing genetic resources of lodgepole pine in west-central Alberta: Patterns of isozyme variation in natural populations and effects of forest management. Forest Ecology and Management, 152(1–3), 45–58.CrossRefGoogle Scholar
  94. Marquardt, P. E., Echt, C. S., Epperson, B. K., & Pubanz, D. M. (2007). Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Canadian Journal of Forest Research, 37(12), 2652–2662.CrossRefGoogle Scholar
  95. Marshall, H. D., Newton, C., & Ritland, K. (2001). Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. Molecular Biology and Evolution, 18(11), 2136–2138.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Marshall, H. D., Newton, C., & Ritland, K. (2002). Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepole pine (Pinus contorta). Theoretical and Applied Genetics, 104(2–3), 367–378.CrossRefGoogle Scholar
  97. Matheson, A. C., Bell, J. C., & Barnes, R. D. (1989). Breeding systems and genetic structure in some central American pine populations. Silvae Genetica, 38(3), 107–113.Google Scholar
  98. Matos, J. A., & Schaal, B. A. (2000). Chloroplast evolution in the Pinus montezumae complex: A coalescent approach to hybridization. Evolution, 54(4), 1218–1233.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Millar, C. I., & Marshall, K. A. (1991). Allozyme variation of Port-Orford-Cedar (Chamaecyparis lawsoniana): Implications for genetic conservation. Forest Science, 37(4), 1060–1077.Google Scholar
  100. Mimura, M., & Aitken, S. N. (2007). Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity, 99(2), 224.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mitton, J. B., Kreiser, B. R., & Latta, R. G. (2000). Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology, 9(1), 91–97.PubMedPubMedCentralGoogle Scholar
  102. Moreno-Letelier, A., & Piñero, D. (2009). Phylogeographic structure of Pinus strobiformis Engelm. across the Chihuahuan Desert filter-barrier. Journal of Biogeography, 36(1), 121–131.CrossRefGoogle Scholar
  103. Mylecraine, K. A., Kuser, J. E., Smouse, P. E., & Zimmermann, G. L. (2004). Geographic allozyme variation in Atlantic white-cedar, Chamaecyparis thyoides (Cupressaceae). Canadian Journal of Forest Research, 34(12), 2443–2454.CrossRefGoogle Scholar
  104. Neale, D. B. (1985). Genetic implications of shelterwood regeneration of Douglas-fir in Southwest Oregon. Forest Science, 31(4), 995–1005.Google Scholar
  105. Neale, D. B. (2007). Genomics to tree breeding and forest health. Current Opinion in Genetics & Development, 17(6), 539–544.CrossRefGoogle Scholar
  106. Neale, D. B., & Adams, W. T. (1985). The mating system in natural and shelterwood stands of Douglas-fir. Theoretical and Applied Genetics, 71(2), 201–207.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Neale, D. B., & Ingvarsson, P. K. (2008). Population, quantitative and comparative genomics of adaptation in forest trees. Current Opinion in Plant Biology, 11(2), 149–155.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Neale, D. B., & Kremer, A. (2011). Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12(2), 111.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Newton, A. C., Allnutt, T. R., Dvorak, W. S., Del Castillo, R. F., & Ennos, R. A. (2002). Patterns of genetic variation in Pinus chiapensis, a threatened Mexican pine, detected by RAPD and mitochondrial DNA RFLP markers. Heredity, 89(3), 191.PubMedCrossRefPubMedCentralGoogle Scholar
  110. O’Connell, L. M., Ritland, K., & Thompson, S. L. (2008). Patterns of post-glacial colonization by western redcedar (Thuja plicata, Cupressaceae) as revealed by microsatellite markers. Botany, 86(2), 194–203.CrossRefGoogle Scholar
  111. Oline, D. K. (2008). Geographic variation in chloroplast haplotypes in the California red fir-noble fir species complex and the status of Shasta red fir. Canadian Journal of Forest Research, 38(10), 2705–2710.CrossRefGoogle Scholar
  112. Oline, D. K., Mitton, J. B., & Grant, M. C. (2000). Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). Evolution, 54(5), 1813–1819.PubMedPubMedCentralGoogle Scholar
  113. Parducci, L., Szmidt, A. E., Villani, F., Wang, X. R., & Cherubini, M. (1996). Genetic variation of Abies alba in Italy. Hereditas, 125(1), 11–18.CrossRefGoogle Scholar
  114. Parker, K. C., Hamrick, J. L., Parker, A. J., & Stacy, E. A. (1997). Allozyme diversity in Pinus virginiana (Pinaceae): Intraspecific and interspecific comparisons. American Journal of Botany, 84(10), 1372–1382.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Parks, C. R., Wendel, J. F., Sewell, M. M., & Qiu, Y. L. (1994). The significance of allozyme variation and introgression in the Liriodendron tulipifera complex (Magnoliaceae). American Journal of Botany, 81, 878–889.CrossRefGoogle Scholar
  116. Parraguirre, C., Vargas, J., Ramírez, P., Azpíroz, H. S., & Jasso, J. (2002). Estructura de la diversidad Genética en poblaciones naturales de pinus greggü Engelm. Revista Fitotecnia Mexicana, 25(3), 279–287.Google Scholar
  117. Piovani, P., Leonardi, S., Piotti, A., & Menozzi, P. (2010). Conservation genetics of small relic populations of silver fir (Abies alba Mill.) in the northern Apennines. Plant Biosystems, 144(3), 683–691.CrossRefGoogle Scholar
  118. Potter, K. M. (2006). Evolutionary history and genetic conservation of Fraser fir (Abies fraseri [Pursh] Poir.). Ph.D. dissertation, North Carolina State University, Raleigh, NC.Google Scholar
  119. Potter, K. M., Dvorak, W. S., Crane, B. S., Hipkins, V. D., Jetton, R. M., Whittier, W. A., & Rhea, R. (2008). Allozyme variation and recent evolutionary history of eastern hemlock (Tsuga canadensis) in the southeastern United States. New Forests, 35(2), 131–145.CrossRefGoogle Scholar
  120. Potter, K. M., Jetton, R. M., Dvorak, W. S., Hipkins, V. D., Rhea, R., & Whittier, W. A. (2012). Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conservation Genetics, 13(2), 475–498.Google Scholar
  121. Potter, K. M., Jetton, R. M., Bower, A., Jacobs, D. F., Man, G., Hipkins, V. D., & Westwood, M. (2017). Banking on the future: Progress, challenges and opportunities for the genetic conservation of forest trees. New Forests, 48, 153–180.CrossRefGoogle Scholar
  122. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.PubMedPubMedCentralGoogle Scholar
  123. Quiñones-Pérez, C. Z., Sáenz-Romero, C., & Wehenkel, C. (2014a). Genetic diversity and conservation of Picea chihuahuana Martínez: A review. African Journal of Biotechnology, 13(28), 2786–2795.CrossRefGoogle Scholar
  124. Quiñones-Pérez, C. Z., Sáenz-Romero, C., & Wehenkel, C. (2014b). Influence of Neighbouring tree species on AFLP variants of endangered Picea chihuahuana Martínez populations on the Sierra Madre occidental, North-Western Mexico. Polish Journal of Ecology, 62(1), 55–65.CrossRefGoogle Scholar
  125. Quiñones-Pérez, C. Z., del Socorro González-Elizondo, M., & Wehenkel, C. (2017). Ruling out genetic erosion in Picea chihuahuana Martínez. New Forests, 48(2), 201–215.CrossRefGoogle Scholar
  126. Rajora, O. P. (1999). Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theoretical and Applied Genetics, 99(6), 954–961.CrossRefGoogle Scholar
  127. Rajora, O. P., & Mosseler, A. (2001). Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118(2), 197–212.CrossRefGoogle Scholar
  128. Rajora, O. P., & Pluhar, S. A. (2003). Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theoretical and Applied Genetics, 106(7), 1203–1212.PubMedPubMedCentralGoogle Scholar
  129. Rajora, O. P., Rahman, M. H., Buchert, G. P., & Dancik, B. P. (2000b). Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Molecular Ecology, 9(3), 339–348.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Ratnam, W., Rajora, O. P., Finkeldey, R., Aravanopoulos, F., Bouvet, J. M., Vaillancourt, R. E., et al. (2014). Genetic effects of forest management practices: Global synthesis and perspectives. Forest Ecology and Management, 333, 52–65.CrossRefGoogle Scholar
  131. Richardson, B. A., Brunsfeld, S. J., & Klopfenstein, N. B. (2002a). DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Molecular Ecology, 11(2), 215–227.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Richardson, B. A., Klopfenstein, N. B., & Brunsfeld, S. J. (2002b). Assessing Clark’s nutcracker seed-caching flights using maternally inherited mitochondrial DNA of whitebark pine. Canadian Journal of Forest Research, 32(6), 1103–1107.CrossRefGoogle Scholar
  133. Ritland, C., Pape, T., & Ritland, K. (2001). Genetic structure of yellow cedar (Chamaecyparis nootkatensis). Canadian Journal of Botany, 79(7), 822–828.CrossRefGoogle Scholar
  134. Robledo-Arnuncio, J. J., Alia, R., & Gil, L. (2004). Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Molecular Ecology, 13(9), 2567–2577.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Rogers, D. L., Millar, C. I., & Westfall, R. D. (1999). Fine-scale genetic structure of whitebark pine (Pinus albicaulis): Associations with watershed and growth form. Evolution, 53(1), 74–90.PubMedGoogle Scholar
  136. Roschanski, A. M., Csilléry, K., Liepelt, S., Oddou-Muratorio, S., Ziegenhagen, B., Huard, F., et al. (2016). Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Molecular Ecology, 25(3), 776–794.PubMedCrossRefGoogle Scholar
  137. Sagnard, F., Barberot, C., & Fady, B. (2002). Structure of genetic diversity in Abies alba Mill. from southwestern Alps: Multivariate analysis of adaptive and non-adaptive traits for conservation in France. Forest Ecology and Management, 157(1–3), 175–189.CrossRefGoogle Scholar
  138. Savolainen, O. (2013). Genetic variation and fitness: Conservation lessons from pines. Conservation Genetics, 68, 27.Google Scholar
  139. Savolainen, O., & Pyhäjärvi, T. (2007). Genomic diversity in forest trees. Current Opinion in Plant Biology, 10(2), 162–167.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Schmidtling, R. C. (2003). The southern pines during the Pleistocene. ISHS Acta Horticulturae 615: 203–209.Google Scholar
  141. Schmidtling, R. C., & Hipkins, V. (1998). Genetic diversity in longleaf pine (Pinus palustris): Influence of historical and prehistorical events. Canadian Journal of Forest Research, 28(8), 1135–1145.Google Scholar
  142. Schmidtling, R. C., Carroll, E., & LaFarge, T. (1999). Allozyme diversity of selected and natural loblolly pine populations. Silvae Genetics, 48(1), 35–45.Google Scholar
  143. Simental-Rodríguez, S. L., Quiñones-Pérez, C. Z., Moya, D., Hernandez-Tecles, E., Lopez-Sanchez, C. A., & Wehenkel, C. (2014). The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico. PLoS One, 9(11), e111623.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Steinhoff, R. J., Joyce, D. G., & Fins, L. (1983). Isozyme variation in Pinus monticola. Canadian Journal of Forest Research, 13(6), 1122–1132.CrossRefGoogle Scholar
  145. Thomas, B. R., Macdonald, S. E., Hicks, M., Adams, D. L., & Hodgetts, R. B. (1999). Effects of reforestation methods on genetic diversity of lodgepole pine: An assessment using microsatellite and randomly amplified polymorphic DNA markers. Theoretical and Applied Genetics, 98(5), 793–801.CrossRefGoogle Scholar
  146. Tomback, D. F., Arno, S. F., & Keane, R. E. (Eds.). (2001). Whitebark pine communities: Ecology and restoration. Washington, DC: Island Press.Google Scholar
  147. Vendramin, G. G., Degen, B., Petit, R. J., Anzidei, M., Madaghiele, A., & Ziegenhagen, B. (1999). High level of variation at Abies alba chloroplast microsatellite loci in Europe. Molecular Ecology, 8(7), 1117–1126.Google Scholar
  148. Viard, F., El-Kassaby, Y. A., & Ritland, K. (2001). Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome, 44(3), 336–344.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Walter, R., & Epperson, B. K. (2001). Geographic pattern of genetic variation in Pinus resinosa: Area of greatest diversity is not the origin of postglacial populations. Molecular Ecology, 10(1), 103–111.PubMedPubMedCentralGoogle Scholar
  150. Wang, C., Perlin, M. H., Stockum, V., Jr, R. R., Hamilton, C. H., & Wagner, D. B. (1997). Chloroplast DNA polymorphisms in Tsuga canadensis and Tsuga caroliniana. Canadian Journal of Forest Research, 27(9), 1329–1335.CrossRefGoogle Scholar
  151. Wehenkel, C., & Sáenz-Romero, C. (2012). Estimating genetic erosion using the example of Picea chihuahuana Martínez. Tree Genetics & Genomes, 8(5), 1085–1094.CrossRefGoogle Scholar
  152. Wehenkel, C., del Rocío Mariscal-Lucero, S., Jaramillo-Correa, J. P., López-Sánchez, C. A., Vargas-Hernández, J. J., & Sáenz-Romero, C. (2017). Genetic diversity and conservation of Mexican forest trees. In Biodiversity and conservation of woody plants (pp. 37–67). Cham: Springer.CrossRefGoogle Scholar
  153. Wheeler, N. C., & Guries, R. P. (1982a). Biogeography of lodgepole pine. Canadian Journal of Botany, 60(9), 1805–1814.Google Scholar
  154. Wu, J., Krutovskii, K. V., & Strauss, S. H. (1998). Abundant mitochondrial genome diversity, population differentiation and convergent evolution in pines. Genetics, 150(4), 1605–1614.PubMedPubMedCentralGoogle Scholar
  155. Wu, J., Krutovskii, K. V., & Strauss, S. H. (1999). Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome, 42(89), 893–908.Google Scholar
  156. Yeh, F. C., & Hu, X. S. (2005). Genetic structure and migration from mainland to island populations in Abies procera Rehd. Genome, 48(3), 461–473.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zabinski, C. (1992). Isozyme variation in eastern hemlock. Canadian Journal of Forest Research, 22(12), 1838–1842.CrossRefGoogle Scholar
  158. Zobel, B. (1978). Gene conservation—As viewed by a forest tree breeder. Forest Ecology and Management, 1, 339–344.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations