Advertisement

Landscape Genomics

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

We have noted several times in this volume the importance of understanding how trees are adapted to their environments. Conifers are found across diverse environments that include extremes for moisture, temperature, soil types, available sunlight, and so on. Not only do we find different species adapted to diverse environments but also within many species we see adaptation to different environments. Having a deep understanding of the genetic basis of adaptation is important for successful reforestation after harvesting, for conservation and restoration programs, and for potentially coping with climate-induced species range changes.

References

  1. Bragg, J. G., Supple, M. A., Andrew, R. L., & Borevitz, J. O. (2015). Genomic variation across landscapes: Insights and applications. New Phytologist, 207(4), 953–967.CrossRefGoogle Scholar
  2. Ćalić, I., Bussotti, F., Martínez-García, P. J., & Neale, D. B. (2016). Recent landscape genomics studies in forest trees—What can we believe? Tree Genetics & Genomes, 12(1), 3.CrossRefGoogle Scholar
  3. Chen, J., Källman, T., Ma, X., Gyllenstrand, N., Zaina, G., Morgante, M., et al. (2012b). Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics, 191(3), 865–881.CrossRefGoogle Scholar
  4. Chen, J., Tsuda, Y., Stocks, M., Källman, T., Xu, N., Kärkkäinen, K., et al. (2014). Clinal variation at phenology-related genes in spruce: Parallel evolution in FTL2 and Gigantea? Genetics, 197(3), 1025–1038.CrossRefGoogle Scholar
  5. Coop, G., Witonsky, D., Di Rienzo, A., & Pritchard, J. K. (2010). Using environmental correlations to identify loci underlying local adaptation. Genetics, 185(4), 1411–1423.CrossRefGoogle Scholar
  6. De La Torre, A. R., Roberts, D. R., & Aitken, S. N. (2014a). Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Molecular Ecology, 23(8), 2046–2059.CrossRefGoogle Scholar
  7. Di Pierro, E. A., Mosca, E., Rocchini, D., Binelli, G., Neale, D. B., & La Porta, N. (2016). Climate-related adaptive genetic variation and population structure in natural stands of Norway spruce in the South-Eastern Alps. Tree Genetics & Genomes, 12(2), 16.CrossRefGoogle Scholar
  8. Eckert, A. J., Bower, A. D., González-Martínez, S. C., Wegrzyn, J. L., Coop, G., & Neale, D. B. (2010a). Back to nature: Ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Molecular Ecology, 19(17), 3789–3805.CrossRefGoogle Scholar
  9. Eckert, A. J., van Heerwaarden, J., Wegrzyn, J. L., Nelson, C. D., Ross-Ibarra, J., González-Martínez, S. C., & Neale, D. B. (2010b). Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics, 185(3), 969–982.CrossRefGoogle Scholar
  10. Eckert, A. J., Maloney, P. E., Vogler, D. R., Jensen, C. E., Mix, A. D., & Neale, D. B. (2015). Local adaptation at fine spatial scales: An example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genetics & Genomes, 11(3), 42.CrossRefGoogle Scholar
  11. Frichot, E., Schoville, S. D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution, 30(7), 1687–1699.CrossRefGoogle Scholar
  12. Grivet, D., Sebastiani, F., Alía, R., Bataillon, T., Torre, S., Zabal-Aguirre, M., et al. (2010). Molecular footprints of local adaptation in two Mediterranean conifers. Molecular Biology and Evolution, 28(1), 101–116.CrossRefGoogle Scholar
  13. Günther, T., & Coop, G. (2013). Robust identification of local adaptation from allele frequencies. Genetics, 195(1), 205–220.CrossRefGoogle Scholar
  14. Lind, B. M., Friedline, C. J., Wegrzyn, J. L., Maloney, P. E., Vogler, D. R., Neale, D. B., & Eckert, A. J. (2017). Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Molecular Ecology, 26(12), 3168–3185.CrossRefGoogle Scholar
  15. Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology & Evolution, 18(4), 189–197.CrossRefGoogle Scholar
  16. Mosca, E., Eckert, A. J., Di Pierro, E. A., Rocchini, D., La Porta, N., Belletti, P., & Neale, D. B. (2012b). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21(22), 5530–5545.CrossRefGoogle Scholar
  17. Mosca, E., González-Martínez, S. C., & Neale, D. B. (2014). Environmental versus geographical determinants of genetic structure in two subalpine conifers. New Phytologist, 201(1), 180–192.CrossRefGoogle Scholar
  18. Mosca, E., Gugerli, F., Eckert, A. J., & Neale, D. B. (2016). Signatures of natural selection on Pinus cembra and P. mugo along elevational gradients in the Alps. Tree Genetics & Genomes, 12(1), 9.CrossRefGoogle Scholar
  19. Nadeau, S., Meirmans, P. G., Aitken, S. N., Ritland, K., & Isabel, N. (2016). The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: The case of two white pines. Ecology and Evolution, 6(24), 8649–8664.CrossRefGoogle Scholar
  20. Rajora, O. P., Eckert, A. J., & Zinck, J. W. (2016). Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One, 11(7), e0158691.CrossRefGoogle Scholar
  21. Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. (2015). A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24(17), 4348–4370.CrossRefGoogle Scholar
  22. Scalfi, M., Mosca, E., Di Pierro, E. A., Troggio, M., Vendramin, G. G., Sperisen, C., et al. (2014). Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce. PLoS One, 9(12), e115499.CrossRefGoogle Scholar
  23. Sork, V. L., Aitken, S. N., Dyer, R. J., Eckert, A. J., Legendre, P., & Neale, D. B. (2013). Putting the landscape into the genomics of trees: Approaches for understanding local adaptation and population responses to changing climate. Tree Genetics & Genomes, 9(4), 901–911.CrossRefGoogle Scholar
  24. Vangestel, C., Vázquez-Lobo, A., Martínez-García, P. J., Ćalić, I., Wegrzyn, J. L., & Neale, D. B. (2016). Patterns of neutral and adaptive genetic diversity across the natural range of sugar pine (Pinus lambertiana Dougl.). Tree Genetics & Genomes, 12(3), 51.CrossRefGoogle Scholar
  25. Wheeler, N., & Neale, D. B. (2014). Landscape genomics: An emerging discipline that can aid forest land managers with planting stock decisions. Mountain Views (CIRMOUNT), 7(2), 10–14.Google Scholar
  26. Yeaman, S., Hodgins, K. A., Lotterhos, K. E., Suren, H., Nadeau, S., Degner, J. C., et al. (2016). Convergent local adaptation to climate in distantly related conifers. Science, 353(6306), 1431–1433.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations