Advertisement

Quantitative Trait Dissection

  • David B. Neale
  • Nicholas C. Wheeler
Chapter

Abstract

The inheritance of phenotypes (traits) in any organism can generally be classified in either of two ways: (1) those inherited by a single gene and (2) those inherited from multiple genes. Multiple terms have been used to describe these two conditions. For single-gene traits, qualitative, monogenic, and Mendelian are used, while traits controlled by multiple genes are referred to as quantitative, polygenic, or complex. In forest genetics, qualitative and quantitative are most often used (White et al. 2007b) and will be generally used in this chapter. In conifers, both qualitative and quantitative inheritance of traits are observed, but by far most traits of interest are quantitatively inherited. For example, traits related to yield, wood properties, and abiotic adaptation are just about always highly quantitative. There are far fewer examples of qualitatively inherited traits, one of the most notable being resistance to white pine blister rust in several species of Pinus subgenus Strobus (Chap.  14).

References

  1. Bartholomé, J., Bink, M. C., van Heerwaarden, J., Chancerel, E., Boury, C., Lesur, I., et al. (2016). Linkage and association mapping for two major traits used in the maritime pine breeding program: Height growth and stem straightness. PLoS One, 11(11), e0165323.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Beaulieu, J., Doerksen, T., Boyle, B., Clément, S., Deslauriers, M., Beauseigle, S., et al. (2011). Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics, 188(1), 197–214.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  4. Brendel, O., Pot, D., Plomion, C., Rozenberg, P., & Guehl, J. M. (2002). Genetic parameters and QTL analysis of δ13C and ring width in maritime pine. Plant, Cell & Environment, 25(8), 945–953.CrossRefGoogle Scholar
  5. Brown, G. R., Bassoni, D. L., Gill, G. P., Fontana, J. R., Wheeler, N. C., Megraw, R. A., et al. (2003). Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics, 164(4), 1537–1546.PubMedPubMedCentralGoogle Scholar
  6. Brown, G. R., Gill, G. P., Kuntz, R. J., Langley, C. H., & Neale, D. B. (2004). Nucleotide diversity and linkage disequilibrium in loblolly pine. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15255–15260.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Budde, K. B., Heuertz, M., Hernanzez-Serrano, A., Pausas, J. G., Vendramin, G. G., Verdu, M., Gonzalez-Martinez, S. c. (2014). In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster). New Phyt. 201:230–241.Google Scholar
  8. Chagné, D., Lalanne, C., Madur, D., Kumar, S., Frigério, J. M., Krier, C., et al. (2002). A high density genetic map of maritime pine based on AFLPs. Annals of Forest Science, 59(5–6), 627–636.CrossRefGoogle Scholar
  9. Chancerel, E., Lepoittevin, C., Le Provost, G., Lin, Y. C., Jaramillo-Correa, J. P., Eckert, A. J., et al. (2011). Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics, 12(1), 368.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chancerel, E., Lamy, J. B., Lesur, I., Noirot, C., Klopp, C., Ehrenmann, F., et al. (2013). High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biology, 11(1), 50.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chhatre, V. E., Byram, T. D., Neale, D. B., Wegrzyn, J. L., & Krutovsky, K. V. (2013). Genetic structure and association mapping of adaptive and selective traits in the East Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genetics & Genomes, 9(5), 1161–1178.CrossRefGoogle Scholar
  12. Costa, P., Pot, D., Dubos, C., Frigerio, J. M., Pionneau, C., Bodenes, C., et al. (2000). A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theoretical and Applied Genetics, 100(1), 39–48.CrossRefGoogle Scholar
  13. Cumbie, W. P., Eckert, A., Wegrzyn, J., Whetten, R., Neale, D., & Goldfarb, B. (2011). Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity, 107(2), 105.PubMedPubMedCentralCrossRefGoogle Scholar
  14. De La Torre, A. R. et al. (2018). Genomic architecture of complex traits in loblolly pine. [in progress].Google Scholar
  15. De Miguel, M., Cabezas, J. A., de María, N., Sánchez-Gómez, D., Guevara, M. Á., Vélez, M. D., et al. (2014). Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genomics, 15(1), 464.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Devey, M. E., Carson, S. D., Nolan, M. F., Matheson, A. C., Te Riini, C., & Hohepa, J. (2004a). QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection. Theoretical and Applied Genetics, 108(3), 516–524.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Devey, M. E., Groom, K. A., Nolan, M. F., Bell, J. C., Dudzinski, M. J., Old, K. M., et al. (2004b). Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theoretical and Applied Genetics, 108(6), 1056–1063.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Dillon, S. K., Nolan, M., Li, W., Bell, C., Wu, H. X., & Southerton, S. G. (2010). Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics, 185(4), 1477–1487.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Eckert, A. J., Bower, A. D., Wegrzyn, J. L., Pande, B., Jermstad, K. D., Krutovsky, K. V., et al. (2009a). Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics, 182(4), 1289–1302.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Eckert, A. J., Wegrzyn, J. L., Cumbie, W. P., Goldfarb, B., Huber, D. A., Tolstikov, V., et al. (2012a). Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytologist, 193(4), 890–902.PubMedCrossRefGoogle Scholar
  21. Eckert, A. J., Wegrzyn, J. L., Liechty, J. D., Lee, J. M., Cumbie, W. P., Davis, J. M., et al. (2013b). The evolutionary genetics of the genes underlying phenotypic associations for loblolly pine (Pinus taeda, Pinaceae). Genetics, 195(4), 1353–1372.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Emebiri, L. C., Devey, M. E., Matheson, A. C., & Slee, M. U. (1998). Age-related changes in the expression of QTLs for growth in radiata pine seedlings. Theoretical and Applied Genetics, 97(7), 1053–1061.CrossRefGoogle Scholar
  23. Falconer, D. S. (1960). Introduction to quantitative genetics. Edinburgh/London: Oliver and Boyd.Google Scholar
  24. González-Martínez, S. C., Wheeler, N. C., Ersoz, E., Nelson, C. D., & Neale, D. B. (2007). Association genetics in Pinus taeda L I. Wood property traits. Genetics, 175(1), 399–409.PubMedPubMedCentralCrossRefGoogle Scholar
  25. González-Martínez, S. C., Huber, D., Ersoz, E., Davis, J. M., & Neale, D. B. (2008). Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity, 101(1), 19.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Goto, Y., Kondo, T., Kuramoto, N., Ide, T., Yamamoto, K., Inaoka, K., & Yasueda, H. (2003). Mapping the gene encoding cry j 1; a major Cryptomeria japonica pollen allergen. Silvae Genetica, 52, 3–4.Google Scholar
  27. Groover, A., Devey, M., Fiddler, T., Lee, J., Megraw, R., Mitchel-Olds, T., et al. (1994). Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics, 138(4), 1293–1300.PubMedPubMedCentralGoogle Scholar
  28. Guan, C., Zhang, H., Zhang, L., Li, X., Deng, J., & Jiang, T. (2011). Construction of genetic linkage maps of larch (Larix kaempferi × Larix gmelini) by RAPD markers and mapping of QTLS for larch. Biotechnology & Biotechnological Equipment, 25(1), 2197–2202.CrossRefGoogle Scholar
  29. Gwaze, D. P., Zhou, Y., Reyes-Valdes, M. H., Al-Rababah, M. A., & Williams, C. G. (2003a). Haplotypic QTL mapping in an outbred pedigree. Genetics Research, 81(1), 43–50.CrossRefGoogle Scholar
  30. Holliday, J. A., Ritland, K., & Aitken, S. N. (2010). Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytologist, 188(2), 501–514.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Holliday, J. A., Wang, T., & Aitken, S. (2012). Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3: Genes, Genomes. Genetics, 2(9), 1085–1093.Google Scholar
  32. Hurme, P., Sillanpää, M. J., Arjas, E., Repo, T., & Savolainen, O. (2000). Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics, 156(3), 1309–1322.PubMedPubMedCentralGoogle Scholar
  33. Jermstad, K. D., Bassoni, D. L., Jech, K. S., Wheeler, N. C., & Neale, D. B. (2001a). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir I. Timing of vegetative bud flush. Theoretical and Applied Genetics, 102(8), 1142–1151.CrossRefGoogle Scholar
  34. Jermstad, K. D., Bassoni, D. L., Wheeler, N. C., Anekonda, T. S., Aitken, S. N., Adams, W. T., & Neale, D. B. (2001b). Main content area mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir II. Spring and fall cold-hardiness. Theoretical and Applied Genetics, 102(8), 1152–1158.CrossRefGoogle Scholar
  35. Jermstad, K. D., Bassoni, D. L., Jech, K. S., Ritchie, G. A., Wheeler, N. C., & Neale, D. B. (2003). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir III. Quantitative trait loci-by-environment interactions. Genetics, 165(3), 1489–1506.PubMedPubMedCentralGoogle Scholar
  36. Kaya, Z., Sewell, M. M., & Neale, D. B. (1999). Identification of quantitative trait loci influencing annual height-and diameter-increment growth in loblolly pine (Pinus taeda L.). Theoretical and Applied Genetics, 98(3–4), 586–592.CrossRefGoogle Scholar
  37. Khan, M. A., & Korban, S. S. (2012). Association mapping in forest trees and fruit crops. Journal of Experimental Botany, 63(11), 4045–4060.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Knott, S. A., Neale, D. B., Sewell, M. M., & Haley, C. S. (1997). Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theoretical and Applied Genetics, 94(6–7), 810–820.CrossRefGoogle Scholar
  39. Kole, C. (Ed.). (2007). Forest trees (Vol. 7). Berlin, Germany: Springer Science & Business Media.Google Scholar
  40. Kruglyak, L., & Lander, E. S. (1995). A nonparametric approach for mapping quantitative trait loci. Genetics, 139(3), 1421–1428.PubMedPubMedCentralGoogle Scholar
  41. Krutovsky, K. V., Troggio, M., Brown, G. R., Jermstad, K. D., & Neale, D. B. (2004). Comparative mapping in the Pinaceae. Genetics, 168(1), 447–461.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kuang, H., Richardson, T. E., Carson, S. D., & Bongarten, B. C. (1999a). Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. II. Genetics of viability genes. Theoretical and Applied Genetics, 99(1–2), 140–146.CrossRefGoogle Scholar
  43. Kubisiak, T. L., Nelson, C. D., Nowak, J., & Friend, A. L. (1999). Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. Journal of Sustainable Forestry, 10(1–2), 69–78.CrossRefGoogle Scholar
  44. Kumar, S., Spelman, R. J., Garrick, D. J., Richardson, T. E., Lausberg, M., & Wilcox, P. L. (2000). Multiple-marker mapping of wood density loci in an outbred pedigree of radiata pine. Theoretical and Applied Genetics, 100(6), 926–933.CrossRefGoogle Scholar
  45. Lamara, M., Raherison, E., Lenz, P., Beaulieu, J., Bousquet, J., & MacKay, J. (2016). Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. New Phytologist, 210(1), 240–255.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185–199.PubMedPubMedCentralGoogle Scholar
  47. Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265(5181), 2037–2048.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lepoittevin, C., Harvengt, L., Plomion, C., & Garnier-Géré, P. (2012). Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics & Genomes, 8(1), 113–126.CrossRefGoogle Scholar
  49. Lerceteau, E., Plomion, C., & Andersson, B. (2000). AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: A preliminary study. Molecular Breeding, 6(5), 451–458.CrossRefGoogle Scholar
  50. Li, Z., Vikneswaran, G., Li, X., Davis, J. M., & Casella, G. (2012a). Simultaneous SNP identification in association studies with missing data. Annals of Applied Statistics, 6, 432–456.CrossRefGoogle Scholar
  51. Li, Z., Hallingbäck, H. R., Abrahamsson, S., Fries, A., Gull, B. A., Sillanpää, M. J., & García-Gil, M. R. (2014). Functional multi-locus QTL mapping of temporal trends in scots pine wood traits. G3: Genes, Genomes, Genetics, 4(12), 2365–2379.CrossRefGoogle Scholar
  52. Li, Y., Wilcox, P., Telfer, E., Graham, N., & Stanbra, L. (2016). Association of single nucleotide polymorphisms with form traits in three New Zealand populations of radiata pine in the presence of genotype by environment interactions. Tree Genetics & Genomes, 12(4), 63.CrossRefGoogle Scholar
  53. Lind, M., Källman, T., Chen, J., Ma, X. F., Bousquet, J., Morgante, M., et al. (2014). A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS One, 9(7), e101049.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lu, M., Krutovsky, K. V., Nelson, C. D., West, J. B., Reilly, N. A., & Loopstra, C. A. (2017). Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms. Tree Genetics & Genomes, 13(3), 57.CrossRefGoogle Scholar
  55. Marguerit, E., Bouffier, L., Chancerel, E., Costa, P., Lagane, F., Guehl, J. M., et al. (2014). The genetics of water-use efficiency and its relation to growth in maritime pine. Journal of Experimental Botany, 65(17), 4757–4768.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Markussen, T., Tusch, A., Stephan, B. R., & Fladung, M. (2004). Identification of molecular markers for selected wood properties of Norway spruce Picea abies L.(Karst.) I. Wood density. Silvae Genetica, 53(1–6), 45–50.CrossRefGoogle Scholar
  57. Markussen, T., Tusch, A., Stephan, B. R., & Fladung, M. (2005). Identification of molecular markers for selected wood properties of Norway spruce Picea abies L.(Karst.) II. Extractives content. Silvae Genetica, 54(1–6), 145–152.CrossRefGoogle Scholar
  58. Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828–9832.CrossRefGoogle Scholar
  59. Moraga-Suazo, P., Orellana, L., Quiroga, P., Balocchi, C., Sanfuentes, E., Whetten, R. W., et al. (2014). Development of a genetic linkage map for Pinus radiata and detection of pitch canker disease resistance associated QTLs. Trees, 28(6), 1823–1835.CrossRefGoogle Scholar
  60. Moriguchi, Y., Ujino-Ihara, T., Uchiyama, K., Futamura, N., Saito, M., Ueno, S., et al. (2012). The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics, 13(1), 95.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Moriguchi, Y., Uchiyama, K., Ueno, S., Ujino-Ihara, T., Matsumoto, A., Iwai, J., et al. (2016). A high-density linkage map with 2560 markers and its application for the localization of the male-sterile genes ms3 and ms4 in Cryptomeria japonica D. Don. Tree Genetics & Genomes, 12(3), 57.CrossRefGoogle Scholar
  62. Neale, D. B., & Kremer, A. (2011). Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12(2), 111.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Neale, D. B., & Savolainen, O. (2004). Association genetics of complex traits in conifers. Trends in Plant Science, 9(7), 325–330.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Neale, D. B., & Williams, C. G. (1991). Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Canadian Journal of Forest Research, 21(5), 545–554.CrossRefGoogle Scholar
  65. Neale, D. B., Devey, M. E., Jermstad, K. D., Ahuja, M. R., Alosi, M. C., & Marshall, K. A. (1992). Use of DNA markers in forest tree improvement research. New Forests, 6(1–4), 391–407.CrossRefGoogle Scholar
  66. Neale, D. B., Kinlaw, C. S., & Sewell, M. M. (1994). Genetic mapping and DNA sequencing of the loblolly pine genome. International Journal of Forest Genetics.Google Scholar
  67. Neale, D. B., Sewell, M. M., & Brown, G. R. (2002). Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Annals of Forest Science, 59(5–6), 595–605.CrossRefGoogle Scholar
  68. Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. http://genomebiology.com/2014/15/3/R59.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno, C., et al. (2017a). The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 7(9), 3157–3167.CrossRefGoogle Scholar
  70. Nowicka, A., Ukalska, J., Simińska, J., & Szyp-Borowska, I. (2013). Characterization and mapping of QTL used in breeding of Scots pine (Pinus sylvestris L.). Folia Forestalia Polonica, Seria A-Forestry, 55(4), 168–173.Google Scholar
  71. Palle, S. R., Seeve, C. M., Eckert, A. J., Wegrzyn, J. L., Neale, D. B., & Loopstra, C. A. (2013). Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms. Tree Physiology, 33(7), 763–774.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Parchman, T. L., Gompert, Z., Mudge, J., Schilkey, F. D., Benkman, C. W., & Buerkle, C. A. (2012). Genome-wide association genetics of an adaptive trait in lodgepole pine. Molecular Ecology, 21(12), 2991–3005.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Pelgas, B., Bousquet, J., Meirmans, P. G., Ritland, K., & Isabel, N. (2011). QTL mapping in white spruce: Gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics, 12(1), 145.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Plomion, C., O’Malley, D. M., & Durel, C. E. (1995). Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theoretical and Applied Genetics, 90(7–8), 1028–1034.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Plomion, C., Durel, C. E., & O’Malley, D. M. (1996). Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theoretical and Applied Genetics, 93(5–6), 849–858.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Pot, D., Rodrigues, J. C., Rozenberg, P., Chantre, G., Tibbits, J., Cahalan, C., et al. (2006). QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genetics & Genomes, 2(1), 10–24.CrossRefGoogle Scholar
  77. Prunier, J., Pelgas, B., Gagnon, F., Desponts, M., Isabel, N., Beaulieu, J., & Bousquet, J. (2013). The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics, 14(1), 368.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Quesada, T., Gopal, V., Cumbie, W. P., Eckert, A. J., Wegrzyn, J. L., Neale, D. B., et al. (2010). Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics, 186(2), 677–686.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Quesada, T., Resende, M. F., Jr., Muñoz, P., Wegrzyn, J. L., Neale, D. B., Kirst, M., et al. (2014). Mapping fusiform rust resistance genes within a complex mating design of loblolly pine. Forests, 5(2), 347–362.CrossRefGoogle Scholar
  80. Raherison, E. S., Giguère, I., Caron, S., Lamara, M., & MacKay, J. J. (2015). Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. New Phytologist, 207(1), 172–187.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Remington, D. L., & O'Malley, D. M. (2000). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution, 54(5), 1580–1589.PubMedCrossRefGoogle Scholar
  82. Ritland, K., Krutovsky, K. V., Tsumura, Y., Pelgas, B., Isabel, N., & Bousquet, J. (2011). Genetic mapping in conifers. In Genetics, genomics and breeding of conifers (pp. 196–238).Google Scholar
  83. Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8(6), 552–560.PubMedPubMedCentralGoogle Scholar
  84. Sewell, M. M., & Neale, D. B. (2000). Mapping quantitative traits in forest trees. In Molecular biology of woody plants (pp. 407–423). Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
  85. Sewell, M. M., Bassoni, D. L., Megraw, R. A., Wheeler, N. C., & Neale, D. B. (2000). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theoretical and Applied Genetics, 101(8), 1273–1281.CrossRefGoogle Scholar
  86. Sewell, M. M., Davis, M. F., Tuskan, G. A., Wheeler, N. C., Elam, C. C., Bassoni, D. L., & Neale, D. B. (2002). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics, 104(2–3), 214–222.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Strauss, S. H., Bousquet, J., Hipkins, V. D., & Hong, Y. P. (1992). Biochemical and molecular genetic markers in biosystematic studies of forest trees. In Population Genetics of Forest Trees (pp. 125–158). Dordrecht: Springer.CrossRefGoogle Scholar
  88. Thavamanikumar, S., Southerton, S. G., Bossinger, G., & Thumma, B. R. (2013). Dissection of complex traits in forest trees—Opportunities for marker-assisted selection. Tree Genetics & Genomes, 9(3), 627–639.CrossRefGoogle Scholar
  89. Thoday, J. M. (1961). Location of polygenes. Nature, 191(4786), 368.CrossRefGoogle Scholar
  90. Uchiyama, K., Iwata, H., Moriguchi, Y., Ujino-Ihara, T., Ueno, S., Taguchi, Y., et al. (2013). Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica. PLoS One, 8(11), e79866.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ujino-Ihara, T., Iwata, H., Taguchi, Y., & Tsumura, Y. (2012). Identification of QTLs associated with male strobilus abundance in Cryptomeria japonica. Tree Genetics & Genomes, 8(6), 1319–1329.CrossRefGoogle Scholar
  92. Ukrainetz, N. K., Ritland, K., & Mansfield, S. D. (2008). Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genetics & Genomes, 4(2), 159–170.CrossRefGoogle Scholar
  93. Wang, Y., Jia, Q., Zhang, L., Zhang, Z., & Zhang, H. (2015). Allelic variation in Cinnamyl alcohol dehydrogenase (LoCAD) associated with wood properties of Larix olgensis. Forests, 6(5), 1649–1665.CrossRefGoogle Scholar
  94. Weng, C., Kubisiak, T., Nelson, C., & Stine, M. (2002). Mapping quantitative trait loci controlling early growth in a (longleaf pine× slash pine)× slash pine BC 1 family. Theoretical and Applied Genetics, 104(5), 852–859.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Westbrook, J. W., Resende, M. F., Munoz, P., Walker, A. R., Wegrzyn, J. L., Nelson, C. D., et al. (2013). Association genetics of oleoresin flow in loblolly pine: Discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytologist, 199(1), 89–100.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Westbrook, J. W., Chhatre, V. E., Wu, L. S., Chamala, S., Neves, L. G., Muñoz, P., et al. (2014). An annotated consensus genetic map for Pinus taeda L. and extent of linkage disequilibrium in three genotype-phenotype discovery populations. bioRxiv, 012625.Google Scholar
  97. Westbrook, J. W., Walker, A. R., Neves, L. G., Munoz, P., Resende, M. F., Neale, D. B., et al. (2015). Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations. New Phytologist, 205(2), 627–641.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Wheeler, N. C., Jermstad, K. D., Krutovsky, K., Aitken, S. N., Howe, G. T., Krakowski, J., & Neale, D. B. (2005). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir IV. Cold-hardiness QTL verification and candidate gene mapping. Molecular Breeding, 15(2), 145–156.CrossRefGoogle Scholar
  99. White, T. L., Adams, W. T., & Neale, D. B. (2007). Forest genetics. Wallingford: CABI Publisher.Google Scholar
  100. Wilcox, P. L., Echt, C. E., & Burdon, R. D. (2007). Gene-assisted selection applications of association genetics for forest tree breeding. In Association Mapping in Plants (pp. 211–247). New York, NY: Springer.CrossRefGoogle Scholar
  101. Williams, C. G., & Neale, D. B. (1992). Conifer wood quality and marker-aided selection: A case study. Canadian Journal of Forest Research, 22(7), 1009–1017.CrossRefGoogle Scholar
  102. Xiong, J. S., McKeand, S. E., Isik, F., Wegrzyn, J., Neale, D. B., Zeng, Z. B., et al. (2016). Quantitative trait loci influencing forking defects in an outbred pedigree of loblolly pine. BMC Genetics, 17(1), 138.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yazdani, R., Nilsson, J. E., Plomion, C., & Mathur, G. (2003). Marker trait association for autumn cold acclimation and growth rhythm in Pinus sylvestris. Scandinavian Journal of Forest Research, 18(1), 29–38.CrossRefGoogle Scholar
  104. Yoshimaru, H., Ohba, K., Tsurumi, K., Tomaru, N., Murai, M., Mukai, Y., et al. (1998). Detection of quantitative trait loci for juvenile growth, flower bearing and rooting ability based on a linkage map of sugi (Cryptomeria japonica D. Don). Theoretical and Applied Genetics, 97(1–2), 45–50.CrossRefGoogle Scholar
  105. Zobel, B., & Talbert, J. (1984). Applied forest tree improvement. New York: Wiley.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations