Adaptive Genetic Variation

  • David B. Neale
  • Nicholas C. Wheeler


Forest geneticists have a strong interest in understanding the distribution and patterning of genetic variation across forest landscapes, the nature of which is shaped by demographic (mating system, gene flow, and genetic drift) and adaptive (natural selection) processes. In Chap.  8, we discussed how these combined forces have resulted in patterns as revealed by common-garden studies. Such studies have been extremely important in guiding seed transfer and reforestation activities but do not explicitly disambiguate between the relative roles of demographic versus adaptive processes. One reason for this lack of clarity is that in common gardens highly polygenic traits are generally evaluated where the patterning of some individual genes reflects demographic processes and for others it is reflective of adaptive processes. To begin to separate the relative roles of demography versus adaptation, we discussed results obtained from neutral-marker studies in Chap.  9. In Chap.  11, we discuss genomic methods to dissect polygenic adaptive traits into their individual gene components. In this chapter, we turn our attention to studies that determine which genes may be nonneutral and thus underlie adaptive patterns of variation based on information in DNA sequences alone.


  1. Bashalkhanov, S., Eckert, A. J., & Rajora, O. P. (2013). Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae). Molecular Ecology, 22(23), 5877–5889.CrossRefGoogle Scholar
  2. Beaumont, M. A., & Nichols, R. A. (1996). Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London B: Biological Sciences, 263(1377), 1619–1626.CrossRefGoogle Scholar
  3. Bodare, S., Stocks, M., Yang, J. C., & Lascoux, M. (2013). Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola). Ecology and Evolution, 3(10), 3320–3333.PubMedPubMedCentralGoogle Scholar
  4. Brown, G. R., Gill, G. P., Kuntz, R. J., Langley, C. H., & Neale, D. B. (2004). Nucleotide diversity and linkage disequilibrium in loblolly pine. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15255–15260.CrossRefGoogle Scholar
  5. Chen, J., Källman, T., Ma, X., Gyllenstrand, N., Zaina, G., Morgante, M., et al. (2012b). Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics, 191(3), 865–881.CrossRefGoogle Scholar
  6. Chen, J., Tsuda, Y., Stocks, M., Källman, T., Xu, N., Kärkkäinen, K., et al. (2014). Clinal variation at phenology-related genes in spruce: Parallel evolution in FTL2 and Gigantea? Genetics, 197(3), 1025–1038.CrossRefGoogle Scholar
  7. Di Pierro, E. A., Mosca, E., Rocchini, D., Binelli, G., Neale, D. B., & La Porta, N. (2016). Climate-related adaptive genetic variation and population structure in natural stands of Norway spruce in the South-Eastern Alps. Tree Genetics & Genomes, 12(2), 16.CrossRefGoogle Scholar
  8. Dillon, S. K., Nolan, M. F., Matter, P., Gapare, W. J., Bragg, J. G., & Southerton, S. G. (2013). Signatures of adaptation and genetic structure among the mainland populations of Pinus radiata (D. Don) inferred from SNP loci. Tree Genetics & Genomes, 9(6), 1447–1463.CrossRefGoogle Scholar
  9. Dvornyk, V., Sirviö, A., Mikkonen, M., & Savolainen, O. (2002). Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Molecular Biology and Evolution, 19(2), 179–188.CrossRefGoogle Scholar
  10. Eckert, A. J., Bower, A. D., Wegrzyn, J. L., Pande, B., Jermstad, K. D., Krutovsky, K. V., et al. (2009a). Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics, 182(4), 1289–1302.CrossRefGoogle Scholar
  11. Eckert, A. J., van Heerwaarden, J., Wegrzyn, J. L., Nelson, C. D., Ross-Ibarra, J., González-Martínez, S. C., & Neale, D. B. (2010b). Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics, 185(3), 969–982.CrossRefGoogle Scholar
  12. Eckert, A. J., Shahi, H., Datwyler, S. L., & Neale, D. B. (2012b). Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae). American Journal of Botany, 99(8), 1323–1334.CrossRefGoogle Scholar
  13. Eckert, A. J., Bower, A. D., Jermstad, K. D., Wegrzyn, J. L., Knaus, B. J., Syring, J. V., & Neale, D. B. (2013a). Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus). Molecular Ecology, 22(22), 5635–5650.CrossRefGoogle Scholar
  14. Eckert, A. J., Wegrzyn, J. L., Liechty, J. D., Lee, J. M., Cumbie, W. P., Davis, J. M., et al. (2013b). The evolutionary genetics of the genes underlying phenotypic associations for loblolly pine (Pinus taeda, Pinaceae). Genetics, 195(4), 1353–1372.CrossRefGoogle Scholar
  15. Ersoz, E. S., Wright, M. H., González-Martínez, S. C., Langley, C. H., & Neale, D. B. (2010). Evolution of disease response genes in loblolly pine: Insights from candidate genes. PLoS One, 5(12), e14234.CrossRefGoogle Scholar
  16. Eveno, E., Collada, C., Guevara, M. A., Léger, V., Soto, A., Díaz, L., Léger, P., González-Martínez, S. C., Cervera, M. T., Plomion, C., & Garnier-Géré, P. H. (2008). Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Molecular Biology and Evolution, 25(2), 417–437.CrossRefGoogle Scholar
  17. Fujimoto, A., Kado, T., Yoshimaru, H., Tsumura, Y., & Tachida, H. (2008). Adaptive and slightly deleterious evolution in a conifer, Cryptomeria japonica. Journal of Molecular Evolution, 67(2), 201–210.CrossRefGoogle Scholar
  18. García-Gil, M. R., Mikkonen, M., & Savolainen, O. (2003). Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Molecular Ecology, 12(5), 1195–1206.CrossRefGoogle Scholar
  19. González-Martínez, S. C., Ersoz, E., Brown, G. R., Wheeler, N. C., & Neale, D. B. (2006a). DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics, 172(3), 1915–1926.CrossRefGoogle Scholar
  20. Grivet, D., Sebastiani, F., González-Martínez, S. C., & Vendramin, G. G. (2009). Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytologist, 184(4), 1016–1028.CrossRefGoogle Scholar
  21. Grivet, D., Sebastiani, F., Alía, R., Bataillon, T., Torre, S., Zabal-Aguirre, M., et al. (2010). Molecular footprints of local adaptation in two Mediterranean conifers. Molecular Biology and Evolution, 28(1), 101–116.CrossRefGoogle Scholar
  22. Grivet, D., Climent, J., Zabal-Aguirre, M., Neale, D. B., Vendramin, G. G., & González-Martínez, S. C. (2013). Adaptive evolution of Mediterranean pines. Molecular Phylogenetics and Evolution, 68(3), 555–566.CrossRefGoogle Scholar
  23. Heuertz, M., De Paoli, E., Källman, T., Larsson, H., Jurman, I., Morgante, M., et al. (2006). Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics, 174(4), 2095–2105.CrossRefGoogle Scholar
  24. Holliday, J. A., Ritland, K., & Aitken, S. N. (2010). Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytologist, 188(2), 501–514.CrossRefGoogle Scholar
  25. Hornoy, B., Pavy, N., Gerardi, S., Beaulieu, J., & Bousquet, J. (2015). Genetic adaptation to climate in white spruce involves small to moderate allele frequency shifts in functionally diverse genes. Genome Biology and Evolution, 7(12), 3269–3285.CrossRefGoogle Scholar
  26. Jermstad, K. D., Sheppard, L. A., Kinloch, B. B., Delfino-Mix, A., Ersoz, E. S., Krutovsky, K. V., & Neale, D. B. (2006). Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics & Genomes, 2(2), 76.CrossRefGoogle Scholar
  27. Kado, T., Yoshimaru, H., Tsumura, Y., & Tachida, H. (2003). DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics, 164(4), 1547–1559.PubMedPubMedCentralGoogle Scholar
  28. Kado, T., Ushio, Y., Yoshimaru, H., Tsumura, Y., & Tachida, H. (2006). Contrasting patterns of DNA variation in natural populations of two related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes & Genetic Systems, 81(2), 103–113.CrossRefGoogle Scholar
  29. Khatab, I. A., Ishiyama, H., Inomata, N., Wang, X. R., & Szmidt, A. E. (2008). Phylogeography of Eurasian Larix species inferred from nucleotide variation in two nuclear genes. Genes & Genetic Systems, 83(1), 55–66.CrossRefGoogle Scholar
  30. Krutovsky, K. V., & Neale, D. B. (2005). Nucleotide diversity and linkage disequilibrium in cold-hardiness-and wood quality-related candidate genes in Douglas fir. Genetics, 171(4), 2029–2041.CrossRefGoogle Scholar
  31. Kujala, S. & Savolainen, O. (2012). Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvrstris): signs of clinal adaptation? Tree Genetics and Genomes 8:1451–1467.Google Scholar
  32. Kusumi, J., Zidong, L., Kado, T., Tsumura, Y., Middleton, B. A., & Tachida, H. (2010). Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley. American Journal of Botany, 97(11), 1848–1857.CrossRefGoogle Scholar
  33. Li, Y., Stocks, M., Hemmilä, S., Källman, T., Zhu, H., Zhou, Y., et al. (2009b). Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci. Molecular Biology and Evolution, 27(5), 1001–1014.CrossRefGoogle Scholar
  34. Lu, M., Krutovsky, K. V., Nelson, C. D., Koralewski, T. E., Byram, T. D., & Loopstra, C. A. (2016). Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics, 17(1), 730.CrossRefGoogle Scholar
  35. Mosca, E., Eckert, A. J., Liechty, J. D., Wegrzyn, J. L., La Porta, N., Vendramin, G. G., & Neale, D. B. (2012a). Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evolutionary Applications, 5(7), 762–775.CrossRefGoogle Scholar
  36. Mosca, E., Gugerli, F., Eckert, A. J., & Neale, D. B. (2016). Signatures of natural selection on Pinus cembra and P. mugo along elevational gradients in the Alps. Tree Genetics & Genomes, 12(1), 9.CrossRefGoogle Scholar
  37. Namroud, M. C., Beaulieu, J., Juge, N., Laroche, J., & Bousquet, J. (2008). Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Molecular Ecology, 17(16), 3599–3613.CrossRefGoogle Scholar
  38. Namroud, M. C., Guillet-Claude, C., Mackay, J., Isabel, N., & Bousquet, J. (2010). Molecular evolution of regulatory genes in spruces from different species and continents: Heterogeneous patterns of linkage disequilibrium and selection but correlated recent demographic changes. Journal of Molecular Evolution, 70(4), 371–386.CrossRefGoogle Scholar
  39. Namroud, M. C., Bousquet, J., Doerksen, T., & Beaulieu, J. (2012). Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce. Evolutionary Applications, 5(6), 641–656.CrossRefGoogle Scholar
  40. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.Google Scholar
  41. Neves, L. G., Davis, J. M., Barbazuk, W. B., & Kirst, M. (2013). Whole-exome targeted sequencing of the uncharacterized pine genome. The Plant Journal, 75(1), 146–156.CrossRefGoogle Scholar
  42. Nielsen, R. (2005). Molecular signatures of natural selection. Annual Review of Genetics, 39, 197–218.CrossRefGoogle Scholar
  43. Pavy, N., Namroud, M. C., Gagnon, F., Isabel, N., & Bousquet, J. (2012a). The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity, 108(3), 273–284.CrossRefGoogle Scholar
  44. Pavy, N., Deschênes, A., Blais, S., Lavigne, P., Beaulieu, J., Isabel, N., et al. (2013). The landscape of nucleotide polymorphism among 13,500 genes of the conifer Picea glauca, relationships with functions, and comparison with Medicago truncatula. Genome Biology and Evolution, 5(10), 1910–1925.CrossRefGoogle Scholar
  45. Pot, D., McMillan, L., Echt, C., Le Provost, G., Garnier-Géré, P., Cato, S., & Plomion, C. (2005). Nucleotide variation in genes involved in wood formation in two pine species. New Phytologist, 167(1), 101–112.CrossRefGoogle Scholar
  46. Prunier, J., Laroche, J., Beaulieu, J., & Bousquet, J. (2011). Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Molecular Ecology, 20(8), 1702–1716.CrossRefGoogle Scholar
  47. Prunier, J., Gerardi, S., Laroche, J., Beaulieu, J., & Bousquet, J. (2012). Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Molecular Ecology, 21(17), 4270–4286.CrossRefGoogle Scholar
  48. Pyhäjärvi, T., Garcia-Gil, M. R., Knürr, T., Mikkonen, M., Wachowiak, W., & Savolainen, O. (2007). Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics, 177(3), 1713–1724.CrossRefGoogle Scholar
  49. Pyhajarvi, T., Kujala, S. T. and Savolainen, O. (2011). Revisiting protein heterozygosity in plants – nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris. Tree Genetics and Genomes 7:385–397.Google Scholar
  50. Scalfi, M., Mosca, E., Di Pierro, E. A., Troggio, M., Vendramin, G. G., Sperisen, C., et al. (2014). Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce. PLoS One, 9(12), e115499.CrossRefGoogle Scholar
  51. Semerikov, V. L., Semerikova, S. A., & Polezhaeva, M. A. (2013). Nucleotide diversity and linkage disequilibrium of adaptive significant genes in Larix (Pinaceae). Russian Journal of Genetics, 49(9), 915–923.CrossRefGoogle Scholar
  52. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.PubMedPubMedCentralGoogle Scholar
  53. Tsumura, Y., Uchiyama, K., Moriguchi, Y., Ueno, S., & Ihara-Ujino, T. (2012). Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity, 109(6), 349.CrossRefGoogle Scholar
  54. Uchiyama, K., Ujino-Ihara, T., Ueno, S., Taguchi, Y., Futamura, N., Shinohara, K., & Tsumura, Y. (2012). Single nucleotide polymorphisms in Cryptomeria japonica: Their discovery and validation for genome mapping and diversity studies. Tree Genetics & Genomes, 8(6), 1213–1222.CrossRefGoogle Scholar
  55. Vornam, B., Arkhipov, A., & Finkeldey, R. (2012). Nucleotide diversity and gene expression of Catalase and Glutathione peroxidase in irradiated Scots pine (Pinus sylvestris L.) from the Chernobyl exclusion zone. Journal of Environmental Radioactivity, 106, 20–26.CrossRefGoogle Scholar
  56. Wachowiak, W., Balk, P. A., & Savolainen, O. (2009). Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genetics & Genomes, 5(1), 117.CrossRefGoogle Scholar
  57. Wachowiak, W., Palme, A. E., & Savolainen, O. (2011a). Speciation history of three closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.). Molecular Ecology, 20(8), 1729–1721.CrossRefGoogle Scholar
  58. Wachowiak, W., Salmela, M. J., Ennos, R. A., Iason, G., & Cavers, S. (2011b). High genetic diversity at the extreme range edge: Nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland. Heredity, 106(5), 775.CrossRefGoogle Scholar
  59. Wachowiak, W., Boratyńska, K., & Cavers, S. (2013). Geographical patterns of nucleotide diversity and population differentiation in three closely related European pine species in the Pinus mugo complex. Botanical Journal of the Linnean Society, 172(2), 225–238.CrossRefGoogle Scholar
  60. Zhou, Y., Zhang, L., Liu, J., Wu, G., & Savolainen, O. (2014). Climatic adaptation and ecological divergence between two closely related pine species in Southeast China. Molecular Ecology, 23(14), 3504–3522.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations